Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation

Bibliographic Details
Main Author: Pedrosa, M
Publication Date: 2020
Other Authors: Da Silva, ES, Pastrana-Martínez, L.M., Drazic, G, Falaras, P, Joaquim Luís Faria, Figueiredo, JL, Silva, Adrian
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/164929
Summary: Undoped metal-free graphene oxide (GO) materials prepared by either a modified Hummers' (GO-H) or a Brodie's (GO-B) method were tested as photocatalysts in aqueous solution for the oxidative conversion of phenol. In the dark, the adsorptive capacity of GO-B towards phenol (similar to 35%) was higher than that of GO-H (similar to 15%). Upon near-UV/Vis irradiation, GO-H was able to remove 21% of phenol after 180 min, mostly through adsorption. On the other hand, by using less energetic visible irradiation, GO-B removed as much as 95% in just 90 min. By thorough characterization of the prepared materials (SEM, HRTEM, TGA, TPD, Raman, XRD, XPS and photoluminescence) the observed performances could be explained in terms of their different surface chemistries. The GO-B presents the lower concentration of oxygen functional groups (in particular carbonyl groups as revealed by XPS) and it has a considerably higher photocatalytic activity compared to GO-H. Photoluminescence (PL) of liquid dispersions and XRD analysis of powders showed lower PL intensity and smaller interlayer distance for GO-B relative to GO-H, respectively: this suggests lower electron-hole recombination and enhanced electron transfer in GO-B, in support of its boosted photocatalytic activity. Reusability tests showed no efficiency loss after a second usage cycle and over three runs under visible irradiation, which was in line with the similarity of the XPS spectra of the fresh and used GO-B materials. Moreover, scavenging studies revealed that holes and hydroxyl radicals were the main reactive species in play during the photocatalytic process. The obtained results, establish for the first time, that GO prepared by Brodie's method is an active and stable undoped metal-free photocatalyst for phenol degradation in aqueous solutions, opening new paths for the application of more sustainable and metal-free materials for water treatment solutions. (C) 2020 The Authors. Published by Elsevier Inc.
id RCAP_cf13e0ebad1b072aadea82cddc73d6ae
oai_identifier_str oai:repositorio-aberto.up.pt:10216/164929
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradationUndoped metal-free graphene oxide (GO) materials prepared by either a modified Hummers' (GO-H) or a Brodie's (GO-B) method were tested as photocatalysts in aqueous solution for the oxidative conversion of phenol. In the dark, the adsorptive capacity of GO-B towards phenol (similar to 35%) was higher than that of GO-H (similar to 15%). Upon near-UV/Vis irradiation, GO-H was able to remove 21% of phenol after 180 min, mostly through adsorption. On the other hand, by using less energetic visible irradiation, GO-B removed as much as 95% in just 90 min. By thorough characterization of the prepared materials (SEM, HRTEM, TGA, TPD, Raman, XRD, XPS and photoluminescence) the observed performances could be explained in terms of their different surface chemistries. The GO-B presents the lower concentration of oxygen functional groups (in particular carbonyl groups as revealed by XPS) and it has a considerably higher photocatalytic activity compared to GO-H. Photoluminescence (PL) of liquid dispersions and XRD analysis of powders showed lower PL intensity and smaller interlayer distance for GO-B relative to GO-H, respectively: this suggests lower electron-hole recombination and enhanced electron transfer in GO-B, in support of its boosted photocatalytic activity. Reusability tests showed no efficiency loss after a second usage cycle and over three runs under visible irradiation, which was in line with the similarity of the XPS spectra of the fresh and used GO-B materials. Moreover, scavenging studies revealed that holes and hydroxyl radicals were the main reactive species in play during the photocatalytic process. The obtained results, establish for the first time, that GO prepared by Brodie's method is an active and stable undoped metal-free photocatalyst for phenol degradation in aqueous solutions, opening new paths for the application of more sustainable and metal-free materials for water treatment solutions. (C) 2020 The Authors. Published by Elsevier Inc.20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/164929eng0021-979710.1016/j.jcis.2020.01.093Pedrosa, MDa Silva, ESPastrana-Martínez, L.M.Drazic, GFalaras, PJoaquim Luís FariaFigueiredo, JLSilva, Adrianinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T19:58:40Zoai:repositorio-aberto.up.pt:10216/164929Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T23:42:03.514531Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
title Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
spellingShingle Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
Pedrosa, M
title_short Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
title_full Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
title_fullStr Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
title_full_unstemmed Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
title_sort Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation
author Pedrosa, M
author_facet Pedrosa, M
Da Silva, ES
Pastrana-Martínez, L.M.
Drazic, G
Falaras, P
Joaquim Luís Faria
Figueiredo, JL
Silva, Adrian
author_role author
author2 Da Silva, ES
Pastrana-Martínez, L.M.
Drazic, G
Falaras, P
Joaquim Luís Faria
Figueiredo, JL
Silva, Adrian
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pedrosa, M
Da Silva, ES
Pastrana-Martínez, L.M.
Drazic, G
Falaras, P
Joaquim Luís Faria
Figueiredo, JL
Silva, Adrian
description Undoped metal-free graphene oxide (GO) materials prepared by either a modified Hummers' (GO-H) or a Brodie's (GO-B) method were tested as photocatalysts in aqueous solution for the oxidative conversion of phenol. In the dark, the adsorptive capacity of GO-B towards phenol (similar to 35%) was higher than that of GO-H (similar to 15%). Upon near-UV/Vis irradiation, GO-H was able to remove 21% of phenol after 180 min, mostly through adsorption. On the other hand, by using less energetic visible irradiation, GO-B removed as much as 95% in just 90 min. By thorough characterization of the prepared materials (SEM, HRTEM, TGA, TPD, Raman, XRD, XPS and photoluminescence) the observed performances could be explained in terms of their different surface chemistries. The GO-B presents the lower concentration of oxygen functional groups (in particular carbonyl groups as revealed by XPS) and it has a considerably higher photocatalytic activity compared to GO-H. Photoluminescence (PL) of liquid dispersions and XRD analysis of powders showed lower PL intensity and smaller interlayer distance for GO-B relative to GO-H, respectively: this suggests lower electron-hole recombination and enhanced electron transfer in GO-B, in support of its boosted photocatalytic activity. Reusability tests showed no efficiency loss after a second usage cycle and over three runs under visible irradiation, which was in line with the similarity of the XPS spectra of the fresh and used GO-B materials. Moreover, scavenging studies revealed that holes and hydroxyl radicals were the main reactive species in play during the photocatalytic process. The obtained results, establish for the first time, that GO prepared by Brodie's method is an active and stable undoped metal-free photocatalyst for phenol degradation in aqueous solutions, opening new paths for the application of more sustainable and metal-free materials for water treatment solutions. (C) 2020 The Authors. Published by Elsevier Inc.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/164929
url https://hdl.handle.net/10216/164929
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0021-9797
10.1016/j.jcis.2020.01.093
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600257845362688