Characteristic functions and averages

Bibliographic Details
Main Author: Azevedo, Assis
Publication Date: 2013
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/13582
Summary: Let $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$.
id RCAP_cea0a584065e05a6e0895f0c3e5ea81c
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/13582
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Characteristic functions and averagesAverageCharacteristic functionsCoincidence setsScience & TechnologyLet $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$.Fundação para a Ciência e a Tecnologia (FCT)Springer VerlagUniversidade do MinhoAzevedo, Assis20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/13582eng1012-940510.1007/s13370-011-0040-zhttp://dx.doi.org/10.1007/s13370-011-0040-zinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:28:43Zoai:repositorium.sdum.uminho.pt:1822/13582Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:19:48.169742Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Characteristic functions and averages
title Characteristic functions and averages
spellingShingle Characteristic functions and averages
Azevedo, Assis
Average
Characteristic functions
Coincidence sets
Science & Technology
title_short Characteristic functions and averages
title_full Characteristic functions and averages
title_fullStr Characteristic functions and averages
title_full_unstemmed Characteristic functions and averages
title_sort Characteristic functions and averages
author Azevedo, Assis
author_facet Azevedo, Assis
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Azevedo, Assis
dc.subject.por.fl_str_mv Average
Characteristic functions
Coincidence sets
Science & Technology
topic Average
Characteristic functions
Coincidence sets
Science & Technology
description Let $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/13582
url http://hdl.handle.net/1822/13582
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1012-9405
10.1007/s13370-011-0040-z
http://dx.doi.org/10.1007/s13370-011-0040-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595247883452416