Characteristic functions and averages
| Main Author: | |
|---|---|
| Publication Date: | 2013 |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/13582 |
Summary: | Let $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$. |
| id |
RCAP_cea0a584065e05a6e0895f0c3e5ea81c |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/13582 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Characteristic functions and averagesAverageCharacteristic functionsCoincidence setsScience & TechnologyLet $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$.Fundação para a Ciência e a Tecnologia (FCT)Springer VerlagUniversidade do MinhoAzevedo, Assis20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/13582eng1012-940510.1007/s13370-011-0040-zhttp://dx.doi.org/10.1007/s13370-011-0040-zinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:28:43Zoai:repositorium.sdum.uminho.pt:1822/13582Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:19:48.169742Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Characteristic functions and averages |
| title |
Characteristic functions and averages |
| spellingShingle |
Characteristic functions and averages Azevedo, Assis Average Characteristic functions Coincidence sets Science & Technology |
| title_short |
Characteristic functions and averages |
| title_full |
Characteristic functions and averages |
| title_fullStr |
Characteristic functions and averages |
| title_full_unstemmed |
Characteristic functions and averages |
| title_sort |
Characteristic functions and averages |
| author |
Azevedo, Assis |
| author_facet |
Azevedo, Assis |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Azevedo, Assis |
| dc.subject.por.fl_str_mv |
Average Characteristic functions Coincidence sets Science & Technology |
| topic |
Average Characteristic functions Coincidence sets Science & Technology |
| description |
Let $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$ such that \begin{eqnarray*} \left\{ \begin{array}{lcl} \alpha_i & = & \alpha_{i+1} \quad\mbox{on $\Omega_i$}\\ \alpha_1+\cdots+\alpha_i & = & f_1+\cdots+f_i\quad\mbox{on $\Omega\setminus\Omega_i$, for all $i< m$}\\ \alpha_1+\cdots+\alpha_m & = & f_1+\cdots+f_m, \end{array} \right. \end{eqnarray*} called the average function of $f:\Omega\rightarrow\mathbb{R}^m$ relatively to $\left(\Omega,\Omega_1,\ldots,\Omega_{m-1}\right)$. When $\Omega$ is a topological space and $f$ is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of $f$. We write $\alpha_i$ as a linear combination of characteristic functions of the (coincidence) sets $\cap_{j=r}^s\Omega_j$, $1\leq r\leq s\leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1,\ldots,f_m]$. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/13582 |
| url |
http://hdl.handle.net/1822/13582 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1012-9405 10.1007/s13370-011-0040-z http://dx.doi.org/10.1007/s13370-011-0040-z |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Verlag |
| publisher.none.fl_str_mv |
Springer Verlag |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595247883452416 |