Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/8041 |
Summary: | This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results. |
id |
RCAP_cd3d17ddebab173f63fb9675b2a9eefa |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/8041 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacksLotka-Volterra systemDelayed population modelDistributed delaysGlobal asymptotic stabilityLocal asymptotic stabilityInstantaneous negative feedbackScience & TechnologyThis paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.Fundação para a Ciência e a Tecnologia (FCT) - programa POCI, projecto PDCT/ MAT/56476/2004.Portugal-FEDERElsevierUniversidade do MinhoFaria, TeresaOliveira, José J.2008-03-012008-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/8041eng"Journal of Differential Equations". ISSN 0022-0396. 244:5 (Mar. 2008) 1049-1079.0022-039610.1016/j.jde.2007.12.005http://www.sciencedirect.com/science/journal/00220396info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:17:28Zoai:repositorium.sdum.uminho.pt:1822/8041Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:59:54.242137Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
title |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
spellingShingle |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks Faria, Teresa Lotka-Volterra system Delayed population model Distributed delays Global asymptotic stability Local asymptotic stability Instantaneous negative feedback Science & Technology |
title_short |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
title_full |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
title_fullStr |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
title_full_unstemmed |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
title_sort |
Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks |
author |
Faria, Teresa |
author_facet |
Faria, Teresa Oliveira, José J. |
author_role |
author |
author2 |
Oliveira, José J. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Faria, Teresa Oliveira, José J. |
dc.subject.por.fl_str_mv |
Lotka-Volterra system Delayed population model Distributed delays Global asymptotic stability Local asymptotic stability Instantaneous negative feedback Science & Technology |
topic |
Lotka-Volterra system Delayed population model Distributed delays Global asymptotic stability Local asymptotic stability Instantaneous negative feedback Science & Technology |
description |
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-01 2008-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/8041 |
url |
https://hdl.handle.net/1822/8041 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal of Differential Equations". ISSN 0022-0396. 244:5 (Mar. 2008) 1049-1079. 0022-0396 10.1016/j.jde.2007.12.005 http://www.sciencedirect.com/science/journal/00220396 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595031231922176 |