Export Ready — 

Applications of Estrada Indices and Energy to a family of compound graphs

Bibliographic Details
Main Author: Andrade, Enide
Publication Date: 2017
Other Authors: Pizarro, Pamela, Robbiano, Maria, San Martin, B., Tapia, Katherine
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/18245
Summary: To track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given.
id RCAP_ccdd4ca1a573f2bc853575e5b771d563
oai_identifier_str oai:ria.ua.pt:10773/18245
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Applications of Estrada Indices and Energy to a family of compound graphsCompound graphEstrada indexLaplacian Estrada indexSignless Laplacian Estrada indexHypoenergetic graphIsospectral graphTo track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given.Elsevier2017-112017-11-01T00:00:00Z2018-11-01T11:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18245eng0024-379510.1016/j.laa.2017.06.035Andrade, EnidePizarro, PamelaRobbiano, MariaSan Martin, B.Tapia, Katherineinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:02:43Zoai:ria.ua.pt:10773/18245Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:55:22.860920Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Applications of Estrada Indices and Energy to a family of compound graphs
title Applications of Estrada Indices and Energy to a family of compound graphs
spellingShingle Applications of Estrada Indices and Energy to a family of compound graphs
Andrade, Enide
Compound graph
Estrada index
Laplacian Estrada index
Signless Laplacian Estrada index
Hypoenergetic graph
Isospectral graph
title_short Applications of Estrada Indices and Energy to a family of compound graphs
title_full Applications of Estrada Indices and Energy to a family of compound graphs
title_fullStr Applications of Estrada Indices and Energy to a family of compound graphs
title_full_unstemmed Applications of Estrada Indices and Energy to a family of compound graphs
title_sort Applications of Estrada Indices and Energy to a family of compound graphs
author Andrade, Enide
author_facet Andrade, Enide
Pizarro, Pamela
Robbiano, Maria
San Martin, B.
Tapia, Katherine
author_role author
author2 Pizarro, Pamela
Robbiano, Maria
San Martin, B.
Tapia, Katherine
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Enide
Pizarro, Pamela
Robbiano, Maria
San Martin, B.
Tapia, Katherine
dc.subject.por.fl_str_mv Compound graph
Estrada index
Laplacian Estrada index
Signless Laplacian Estrada index
Hypoenergetic graph
Isospectral graph
topic Compound graph
Estrada index
Laplacian Estrada index
Signless Laplacian Estrada index
Hypoenergetic graph
Isospectral graph
description To track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
2017-11-01T00:00:00Z
2018-11-01T11:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18245
url http://hdl.handle.net/10773/18245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2017.06.035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594187968151552