Applications of Estrada Indices and Energy to a family of compound graphs
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/18245 |
Summary: | To track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given. |
id |
RCAP_ccdd4ca1a573f2bc853575e5b771d563 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/18245 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Applications of Estrada Indices and Energy to a family of compound graphsCompound graphEstrada indexLaplacian Estrada indexSignless Laplacian Estrada indexHypoenergetic graphIsospectral graphTo track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given.Elsevier2017-112017-11-01T00:00:00Z2018-11-01T11:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18245eng0024-379510.1016/j.laa.2017.06.035Andrade, EnidePizarro, PamelaRobbiano, MariaSan Martin, B.Tapia, Katherineinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:02:43Zoai:ria.ua.pt:10773/18245Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:55:22.860920Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Applications of Estrada Indices and Energy to a family of compound graphs |
title |
Applications of Estrada Indices and Energy to a family of compound graphs |
spellingShingle |
Applications of Estrada Indices and Energy to a family of compound graphs Andrade, Enide Compound graph Estrada index Laplacian Estrada index Signless Laplacian Estrada index Hypoenergetic graph Isospectral graph |
title_short |
Applications of Estrada Indices and Energy to a family of compound graphs |
title_full |
Applications of Estrada Indices and Energy to a family of compound graphs |
title_fullStr |
Applications of Estrada Indices and Energy to a family of compound graphs |
title_full_unstemmed |
Applications of Estrada Indices and Energy to a family of compound graphs |
title_sort |
Applications of Estrada Indices and Energy to a family of compound graphs |
author |
Andrade, Enide |
author_facet |
Andrade, Enide Pizarro, Pamela Robbiano, Maria San Martin, B. Tapia, Katherine |
author_role |
author |
author2 |
Pizarro, Pamela Robbiano, Maria San Martin, B. Tapia, Katherine |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Enide Pizarro, Pamela Robbiano, Maria San Martin, B. Tapia, Katherine |
dc.subject.por.fl_str_mv |
Compound graph Estrada index Laplacian Estrada index Signless Laplacian Estrada index Hypoenergetic graph Isospectral graph |
topic |
Compound graph Estrada index Laplacian Estrada index Signless Laplacian Estrada index Hypoenergetic graph Isospectral graph |
description |
To track the gradual change of the adjacency matrix of a simple graph $\mathcal{G}$ into the signless Laplacian matrix, V. Nikiforov in \cite{NKF} suggested the study of the convex linear combination $A_{\alpha }$ (\textit{$\alpha$-adjacency matrix}), \[A_{\alpha }\left( \mathcal{G}\right)=\alpha D\left( \mathcal{G}\right) +\left( 1-\alpha \right) A\left( \mathcal{G}\right),\] for $\alpha \in \left[ 0,1\right]$, where $A\left( \mathcal{G}\right)$ and $D\left( \mathcal{G}\right)$ are the adjacency and the diagonal vertex degrees matrices of $\mathcal{G}$, respectively. Taking this definition as an idea the next matrix was considered for $a,b \in \mathbb{R}$. The matrix $A_{a,b}$ defined by $$ A_{a,b}\left( \mathcal{G}\right) =a D\left( \mathcal{G}\right) + b A\left(\mathcal{G}\right),$$ extends the previous $\alpha$-adjacency matrix. This matrix is designated the \textit{$(a,b)$-adjacency matrix of $\mathcal{G}$}. Both adjacency matrices are examples of universal matrices already studied by W. Haemers. In this paper, we study the $(a,b)$-adjacency spectra for a family of compound graphs formed by disjoint balanced trees whose roots are identified to the vertices of a given graph. In consequence, new families of cospectral (adjacency, Laplacian and signless Laplacian) graphs, new hypoenergetic graphs (graphs whose energy is less than its vertex number) and new explicit formulae for Estrada, signless Laplacian Estrada and Laplacian Estrada indices of graphs were obtained. Moreover, sharp upper bounds of the above indices for caterpillars, in terms of length of the path and of the maximum number of its pendant vertices, are given. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 2017-11-01T00:00:00Z 2018-11-01T11:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18245 |
url |
http://hdl.handle.net/10773/18245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2017.06.035 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594187968151552 |