Evolutionary symbiotic feature selection for email spam detection

Detalhes bibliográficos
Autor(a) principal: Cortez, Paulo
Data de Publicação: 2012
Outros Autores: Vaz, Rui Fernando Martins, Rocha, Miguel, Rio, Miguel, Sousa, Pedro
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/1822/21405
Resumo: This work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a Content- Based Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary A l gori thms are expl ored f or f eature sel ecti on, i ncl udi ng the proposed symbi oti c exchange of the most rel evant featuresamong different users. Theexperimentswereconducted using anovel corpusbased on thewell known Enron datasets mixed with recent spam. The obtained results show that the symbiotic approach is competitive.
id RCAP_cc064a7e4f6fab6a8816ecc4e6f102b3
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/21405
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Evolutionary symbiotic feature selection for email spam detectionCollaborative filteringContent-based filteringEvolutionary algorithmsFeature selectionNaive bayesSpam emailSymbiotic filteringText classificationThis work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a Content- Based Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary A l gori thms are expl ored f or f eature sel ecti on, i ncl udi ng the proposed symbi oti c exchange of the most rel evant featuresamong different users. Theexperimentswereconducted using anovel corpusbased on thewell known Enron datasets mixed with recent spam. The obtained results show that the symbiotic approach is competitive.Fundação para a Ciência e a Tecnologia (FCT) - FCOMP-01-0124-FEDER-022674COMPETESCITEPRESSUniversidade do MinhoCortez, PauloVaz, Rui Fernando MartinsRocha, MiguelRio, MiguelSousa, Pedro2012-072012-07-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/21405eng978-989-8565-21-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:23:13Zoai:repositorium.sdum.uminho.pt:1822/21405Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:16:55.594615Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Evolutionary symbiotic feature selection for email spam detection
title Evolutionary symbiotic feature selection for email spam detection
spellingShingle Evolutionary symbiotic feature selection for email spam detection
Cortez, Paulo
Collaborative filtering
Content-based filtering
Evolutionary algorithms
Feature selection
Naive bayes
Spam email
Symbiotic filtering
Text classification
title_short Evolutionary symbiotic feature selection for email spam detection
title_full Evolutionary symbiotic feature selection for email spam detection
title_fullStr Evolutionary symbiotic feature selection for email spam detection
title_full_unstemmed Evolutionary symbiotic feature selection for email spam detection
title_sort Evolutionary symbiotic feature selection for email spam detection
author Cortez, Paulo
author_facet Cortez, Paulo
Vaz, Rui Fernando Martins
Rocha, Miguel
Rio, Miguel
Sousa, Pedro
author_role author
author2 Vaz, Rui Fernando Martins
Rocha, Miguel
Rio, Miguel
Sousa, Pedro
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cortez, Paulo
Vaz, Rui Fernando Martins
Rocha, Miguel
Rio, Miguel
Sousa, Pedro
dc.subject.por.fl_str_mv Collaborative filtering
Content-based filtering
Evolutionary algorithms
Feature selection
Naive bayes
Spam email
Symbiotic filtering
Text classification
topic Collaborative filtering
Content-based filtering
Evolutionary algorithms
Feature selection
Naive bayes
Spam email
Symbiotic filtering
Text classification
description This work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a Content- Based Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary A l gori thms are expl ored f or f eature sel ecti on, i ncl udi ng the proposed symbi oti c exchange of the most rel evant featuresamong different users. Theexperimentswereconducted using anovel corpusbased on thewell known Enron datasets mixed with recent spam. The obtained results show that the symbiotic approach is competitive.
publishDate 2012
dc.date.none.fl_str_mv 2012-07
2012-07-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/21405
url http://hdl.handle.net/1822/21405
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-989-8565-21-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SCITEPRESS
publisher.none.fl_str_mv SCITEPRESS
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595217080483840