The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.21/17167 |
Summary: | Introduction: Add-on biological monoclonal antibodies such as benralizumab (anti-IL-5Ra) are recommended by international guidelines to reduce exacerbations in severe eosinophilic asthma (SEA). However, few studies have assessed the impact of these therapies on lung function-related outcomes. Our goal was to evaluate the effectiveness of benralizumab on lung function, including lung volumes and airway resistance, in SEA patients in Portugal. Methods: This was a real-world, observational, prospective, multicentric study including adult patients diagnosed with SEA (January-June 2023). Spirometry and plethysmography were performed at baseline (T0) and after six months of treatment (T6) with benralizumab to assess: total lung capacity (TLC), residual volume (RV), forced expiratory volume in one second (FEV1), forced vital capacity (FVC), mean forced expiratory flow between 25% and 75% of FVC (mFEF-25/75), intrathoracic gas volume (ITGV), and respiratory airway resistance (Raw). Descriptive statistics (with categorical variables described as frequencies and continuous values as mean and standard deviation (SD)) and paired t-test and Cohen's d effect size were calculated (analyses performed in StataCorp v.15.1; StataCorp LLC, TX, USA). Results: Overall, 30 SEA patients were evaluated, mostly women (n=18, 60.0%), with atopy (n=22, 73.3%), a mean age of 58.4 years (SD 11.7), and assisted by pulmonology (n=19, 63.3%) or immunology-allergology (n=11, 36.7%) services. Mean eosinophilia at baseline was 1103.57 cells/mcL (SD 604.88; minimum-maximum 460-2400); after the use of benralizumab, the count dropped to zero. After six months of treatment, a significant increase (p<0.0001) in FVC (15.3%), FEV1 (22.6%), and mFEF-25/75 (17.7%) were observed from baseline (Cohen's d between 0.78 and 1.11). ITGV, RV, RV/TLC, and Raw significantly decreased (p<0.0001) during the study period (-17.3%, -29.7%, -8.9%, and -100.6%, respectively) (Cohen's d between -0.79 and -1.06). No differences in TLC were obtained (p=0.173). No differences between sexes were observed for any measure. Patients with more significant eosinophilia (>900 cells/mcL count; n=15) presented better responses in FEV1 (p=0.001) and mFEF-25/75 (p=0.007). Conclusions: A notable eosinophil depletion with add-on benralizumab led to significant improvements in SEA patients' respiratory function (static lung volumes and airway resistance) in real-world settings after six months. The significant deflating effect of benralizumab on patients' hyperinflated lungs led to enhanced expiratory flow (increased FEV1 and mFEF-25/75) and air trapping (decreased RV/TLC), suggesting this antibody improves bronchial obstruction, lung hyperinflation, and airway resistance. Further studies in a larger population are required to confirm these findings. |
id |
RCAP_cb8eaf3a78bded38fdf5ee769aba7ae7 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/17167 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world studyBenralizumabAnti-il5Respiratory functionSevere eosinophilic asthmat2 inflammationIntroduction: Add-on biological monoclonal antibodies such as benralizumab (anti-IL-5Ra) are recommended by international guidelines to reduce exacerbations in severe eosinophilic asthma (SEA). However, few studies have assessed the impact of these therapies on lung function-related outcomes. Our goal was to evaluate the effectiveness of benralizumab on lung function, including lung volumes and airway resistance, in SEA patients in Portugal. Methods: This was a real-world, observational, prospective, multicentric study including adult patients diagnosed with SEA (January-June 2023). Spirometry and plethysmography were performed at baseline (T0) and after six months of treatment (T6) with benralizumab to assess: total lung capacity (TLC), residual volume (RV), forced expiratory volume in one second (FEV1), forced vital capacity (FVC), mean forced expiratory flow between 25% and 75% of FVC (mFEF-25/75), intrathoracic gas volume (ITGV), and respiratory airway resistance (Raw). Descriptive statistics (with categorical variables described as frequencies and continuous values as mean and standard deviation (SD)) and paired t-test and Cohen's d effect size were calculated (analyses performed in StataCorp v.15.1; StataCorp LLC, TX, USA). Results: Overall, 30 SEA patients were evaluated, mostly women (n=18, 60.0%), with atopy (n=22, 73.3%), a mean age of 58.4 years (SD 11.7), and assisted by pulmonology (n=19, 63.3%) or immunology-allergology (n=11, 36.7%) services. Mean eosinophilia at baseline was 1103.57 cells/mcL (SD 604.88; minimum-maximum 460-2400); after the use of benralizumab, the count dropped to zero. After six months of treatment, a significant increase (p<0.0001) in FVC (15.3%), FEV1 (22.6%), and mFEF-25/75 (17.7%) were observed from baseline (Cohen's d between 0.78 and 1.11). ITGV, RV, RV/TLC, and Raw significantly decreased (p<0.0001) during the study period (-17.3%, -29.7%, -8.9%, and -100.6%, respectively) (Cohen's d between -0.79 and -1.06). No differences in TLC were obtained (p=0.173). No differences between sexes were observed for any measure. Patients with more significant eosinophilia (>900 cells/mcL count; n=15) presented better responses in FEV1 (p=0.001) and mFEF-25/75 (p=0.007). Conclusions: A notable eosinophil depletion with add-on benralizumab led to significant improvements in SEA patients' respiratory function (static lung volumes and airway resistance) in real-world settings after six months. The significant deflating effect of benralizumab on patients' hyperinflated lungs led to enhanced expiratory flow (increased FEV1 and mFEF-25/75) and air trapping (decreased RV/TLC), suggesting this antibody improves bronchial obstruction, lung hyperinflation, and airway resistance. Further studies in a larger population are required to confirm these findings.PubMed CentralRCIPLGerardo, António MadeiraAlves, Carolina da SilvaGomes, MargaridaPardal, CecíliaSokolova, AnnaLiberato, HediMendes, AnaTonin, FernandaDuarte-Ramos, FilipaLopes, Carlos2024-03-01T12:03:26Z2024-012024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/17167eng10.7759/cureus.52452info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T08:22:18Zoai:repositorio.ipl.pt:10400.21/17167Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:55:26.501064Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
title |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
spellingShingle |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study Gerardo, António Madeira Benralizumab Anti-il5 Respiratory function Severe eosinophilic asthma t2 inflammation |
title_short |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
title_full |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
title_fullStr |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
title_full_unstemmed |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
title_sort |
The effects of benralizumab on lung volumes and airway resistance in severe eosinophilic asthma: a real-world study |
author |
Gerardo, António Madeira |
author_facet |
Gerardo, António Madeira Alves, Carolina da Silva Gomes, Margarida Pardal, Cecília Sokolova, Anna Liberato, Hedi Mendes, Ana Tonin, Fernanda Duarte-Ramos, Filipa Lopes, Carlos |
author_role |
author |
author2 |
Alves, Carolina da Silva Gomes, Margarida Pardal, Cecília Sokolova, Anna Liberato, Hedi Mendes, Ana Tonin, Fernanda Duarte-Ramos, Filipa Lopes, Carlos |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Gerardo, António Madeira Alves, Carolina da Silva Gomes, Margarida Pardal, Cecília Sokolova, Anna Liberato, Hedi Mendes, Ana Tonin, Fernanda Duarte-Ramos, Filipa Lopes, Carlos |
dc.subject.por.fl_str_mv |
Benralizumab Anti-il5 Respiratory function Severe eosinophilic asthma t2 inflammation |
topic |
Benralizumab Anti-il5 Respiratory function Severe eosinophilic asthma t2 inflammation |
description |
Introduction: Add-on biological monoclonal antibodies such as benralizumab (anti-IL-5Ra) are recommended by international guidelines to reduce exacerbations in severe eosinophilic asthma (SEA). However, few studies have assessed the impact of these therapies on lung function-related outcomes. Our goal was to evaluate the effectiveness of benralizumab on lung function, including lung volumes and airway resistance, in SEA patients in Portugal. Methods: This was a real-world, observational, prospective, multicentric study including adult patients diagnosed with SEA (January-June 2023). Spirometry and plethysmography were performed at baseline (T0) and after six months of treatment (T6) with benralizumab to assess: total lung capacity (TLC), residual volume (RV), forced expiratory volume in one second (FEV1), forced vital capacity (FVC), mean forced expiratory flow between 25% and 75% of FVC (mFEF-25/75), intrathoracic gas volume (ITGV), and respiratory airway resistance (Raw). Descriptive statistics (with categorical variables described as frequencies and continuous values as mean and standard deviation (SD)) and paired t-test and Cohen's d effect size were calculated (analyses performed in StataCorp v.15.1; StataCorp LLC, TX, USA). Results: Overall, 30 SEA patients were evaluated, mostly women (n=18, 60.0%), with atopy (n=22, 73.3%), a mean age of 58.4 years (SD 11.7), and assisted by pulmonology (n=19, 63.3%) or immunology-allergology (n=11, 36.7%) services. Mean eosinophilia at baseline was 1103.57 cells/mcL (SD 604.88; minimum-maximum 460-2400); after the use of benralizumab, the count dropped to zero. After six months of treatment, a significant increase (p<0.0001) in FVC (15.3%), FEV1 (22.6%), and mFEF-25/75 (17.7%) were observed from baseline (Cohen's d between 0.78 and 1.11). ITGV, RV, RV/TLC, and Raw significantly decreased (p<0.0001) during the study period (-17.3%, -29.7%, -8.9%, and -100.6%, respectively) (Cohen's d between -0.79 and -1.06). No differences in TLC were obtained (p=0.173). No differences between sexes were observed for any measure. Patients with more significant eosinophilia (>900 cells/mcL count; n=15) presented better responses in FEV1 (p=0.001) and mFEF-25/75 (p=0.007). Conclusions: A notable eosinophil depletion with add-on benralizumab led to significant improvements in SEA patients' respiratory function (static lung volumes and airway resistance) in real-world settings after six months. The significant deflating effect of benralizumab on patients' hyperinflated lungs led to enhanced expiratory flow (increased FEV1 and mFEF-25/75) and air trapping (decreased RV/TLC), suggesting this antibody improves bronchial obstruction, lung hyperinflation, and airway resistance. Further studies in a larger population are required to confirm these findings. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-01T12:03:26Z 2024-01 2024-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/17167 |
url |
http://hdl.handle.net/10400.21/17167 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.7759/cureus.52452 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
PubMed Central |
publisher.none.fl_str_mv |
PubMed Central |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598397255254016 |