A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2012 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/1822/20886 |
Resumo: | Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided. |
| id |
RCAP_cb30316e31f90cc9b023c249d087d80a |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20886 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimizationGlobal OptimizationAugmented LagrangianGenetic algorithmPattern SearchScience & TechnologyHybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.FEDER COMPETEFundação para a Ciência e a Tecnologia (FCT)ElsevierUniversidade do MinhoCosta, L.Espírito Santo, I. A. C. P.Fernandes, Edite Manuela da G. P.2012-05-152012-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/20886eng0096-300310.1016/j.amc.2012.03.025http://www.sciencedirect.com/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:36:03Zoai:repositorium.sdum.uminho.pt:1822/20886Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:27:49.224207Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| title |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| spellingShingle |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization Costa, L. Global Optimization Augmented Lagrangian Genetic algorithm Pattern Search Science & Technology |
| title_short |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| title_full |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| title_fullStr |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| title_full_unstemmed |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| title_sort |
A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization |
| author |
Costa, L. |
| author_facet |
Costa, L. Espírito Santo, I. A. C. P. Fernandes, Edite Manuela da G. P. |
| author_role |
author |
| author2 |
Espírito Santo, I. A. C. P. Fernandes, Edite Manuela da G. P. |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Costa, L. Espírito Santo, I. A. C. P. Fernandes, Edite Manuela da G. P. |
| dc.subject.por.fl_str_mv |
Global Optimization Augmented Lagrangian Genetic algorithm Pattern Search Science & Technology |
| topic |
Global Optimization Augmented Lagrangian Genetic algorithm Pattern Search Science & Technology |
| description |
Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-05-15 2012-05-15T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/20886 |
| url |
https://hdl.handle.net/1822/20886 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0096-3003 10.1016/j.amc.2012.03.025 http://www.sciencedirect.com/ |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595333017337856 |