A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization

Detalhes bibliográficos
Autor(a) principal: Costa, L.
Data de Publicação: 2012
Outros Autores: Espírito Santo, I. A. C. P., Fernandes, Edite Manuela da G. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/1822/20886
Resumo: Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.
id RCAP_cb30316e31f90cc9b023c249d087d80a
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20886
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A hybrid genetic pattern search augmented Lagrangian method for constrained global optimizationGlobal OptimizationAugmented LagrangianGenetic algorithmPattern SearchScience & TechnologyHybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.FEDER COMPETEFundação para a Ciência e a Tecnologia (FCT)ElsevierUniversidade do MinhoCosta, L.Espírito Santo, I. A. C. P.Fernandes, Edite Manuela da G. P.2012-05-152012-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/20886eng0096-300310.1016/j.amc.2012.03.025http://www.sciencedirect.com/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:36:03Zoai:repositorium.sdum.uminho.pt:1822/20886Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:27:49.224207Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
title A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
spellingShingle A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
Costa, L.
Global Optimization
Augmented Lagrangian
Genetic algorithm
Pattern Search
Science & Technology
title_short A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
title_full A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
title_fullStr A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
title_full_unstemmed A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
title_sort A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization
author Costa, L.
author_facet Costa, L.
Espírito Santo, I. A. C. P.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Espírito Santo, I. A. C. P.
Fernandes, Edite Manuela da G. P.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, L.
Espírito Santo, I. A. C. P.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Global Optimization
Augmented Lagrangian
Genetic algorithm
Pattern Search
Science & Technology
topic Global Optimization
Augmented Lagrangian
Genetic algorithm
Pattern Search
Science & Technology
description Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.
publishDate 2012
dc.date.none.fl_str_mv 2012-05-15
2012-05-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/20886
url https://hdl.handle.net/1822/20886
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0096-3003
10.1016/j.amc.2012.03.025
http://www.sciencedirect.com/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595333017337856