Automatic selection of indicators in a fully saturated regression
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.14/6624 |
Summary: | We consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal cases |
id |
RCAP_cb0adde45ff1fa26d87c8761b17d58b2 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/6624 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Automatic selection of indicators in a fully saturated regressionIndicatorsRegression saturationSubset selectionModel selectionWe consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal casesSpringerVeritatiSantos, CarlosHendry, David F.Johansen, Soren2011-10-21T10:22:49Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/6624eng10.1007/s00180-007-0054-zinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T15:08:00Zoai:repositorio.ucp.pt:10400.14/6624Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:10:25.674973Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Automatic selection of indicators in a fully saturated regression |
title |
Automatic selection of indicators in a fully saturated regression |
spellingShingle |
Automatic selection of indicators in a fully saturated regression Santos, Carlos Indicators Regression saturation Subset selection Model selection |
title_short |
Automatic selection of indicators in a fully saturated regression |
title_full |
Automatic selection of indicators in a fully saturated regression |
title_fullStr |
Automatic selection of indicators in a fully saturated regression |
title_full_unstemmed |
Automatic selection of indicators in a fully saturated regression |
title_sort |
Automatic selection of indicators in a fully saturated regression |
author |
Santos, Carlos |
author_facet |
Santos, Carlos Hendry, David F. Johansen, Soren |
author_role |
author |
author2 |
Hendry, David F. Johansen, Soren |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Veritati |
dc.contributor.author.fl_str_mv |
Santos, Carlos Hendry, David F. Johansen, Soren |
dc.subject.por.fl_str_mv |
Indicators Regression saturation Subset selection Model selection |
topic |
Indicators Regression saturation Subset selection Model selection |
description |
We consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal cases |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2011-10-21T10:22:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/6624 |
url |
http://hdl.handle.net/10400.14/6624 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/s00180-007-0054-z |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833601254791577600 |