Positive-definiteness and integral representations for special functions
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.21/12608 |
Summary: | It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip. |
id |
RCAP_ca41b718e643c112c2f27ced147df266 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/12608 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Positive-definiteness and integral representations for special functionsPositive definite functionsFourier-Laplace transformCharacteristic functionsHolomorphyGamma functionZeta functionExponentially convex functionsIt is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip.SpringerRCIPLBuescu, JorgePaixão, António2021-01-14T12:45:42Z2020-082020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/12608eng1385-12921572-928110.1007/s11117-020-00784-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T08:28:32Zoai:repositorio.ipl.pt:10400.21/12608Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:55:57.652776Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Positive-definiteness and integral representations for special functions |
title |
Positive-definiteness and integral representations for special functions |
spellingShingle |
Positive-definiteness and integral representations for special functions Buescu, Jorge Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
title_short |
Positive-definiteness and integral representations for special functions |
title_full |
Positive-definiteness and integral representations for special functions |
title_fullStr |
Positive-definiteness and integral representations for special functions |
title_full_unstemmed |
Positive-definiteness and integral representations for special functions |
title_sort |
Positive-definiteness and integral representations for special functions |
author |
Buescu, Jorge |
author_facet |
Buescu, Jorge Paixão, António |
author_role |
author |
author2 |
Paixão, António |
author2_role |
author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Buescu, Jorge Paixão, António |
dc.subject.por.fl_str_mv |
Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
topic |
Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
description |
It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 2020-08-01T00:00:00Z 2021-01-14T12:45:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/12608 |
url |
http://hdl.handle.net/10400.21/12608 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1385-1292 1572-9281 10.1007/s11117-020-00784-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598402973138944 |