NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture

Bibliographic Details
Main Author: Moniz, Mariana Peyró
Publication Date: 2021
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/143741
Summary: In the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application.
id RCAP_c7f7a260748c04f04b2d2918025d637b
oai_identifier_str oai:run.unl.pt:10362/143741
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted ArchitectureThin film photovoltaicsPerovskite solar cellsHole transport layerrf-sputtered NiOxDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaIn the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application.No mundo da energia fotovoltaica, as células solares de perovskite (PSCs) estão num caminho muito promissor de desenvolvimento tecnológico. A sua progressão em eficiência tem sido excepcionalmente rápida, de 3.8% para 25.5% (2020) em apenas 11 anos. Apesar da importância da camada activa de perovskite, a optimização das PSCs depende também da optimização das camadas condutoras de cargas, sendo a camada transportadora de buracos (HTL), aquela que precisa de mais desenvolvimento ao nível da investigação. Nesta tese, um estudo é feito à cerca de filmes finos de NiOx para a sua aplicação como HTLs em PSCs invertidas (com estrutura p-i-n), motivado não só pelo desempenho e fiabilidade já conhecidos na utilização de NiOx em PSCs, mas também, pelo seu baixo custo em comparação com outros materiais do estado-da-arte desta tecnologia (ex.: Spiro-MeOTAD). Neste estudo são investigados e optimizados filmes finos de NiOx depositados por pulverização catódica induzida por rf. Estes filmes são analisados por diferentes métodos de caracterização como, espectroscopia de UV-Vis-NIR, difracção de raio-X e microscopia de força atómica. A partir desta análise, um conjunto de condições de deposição, foram seleccionadas para a integração dos filmes finos de NiOx em PSCs: pressão de árgon de 4×10-3 mbar, potência de rf de 100 W, e temperatura do substrato de 200 ˚C. PSCs foram depositadas sobre o HTL desenvolvido, usando MAPbI3 como camada activa, PCBM como camada transportadora de electrões (ETL), e BCP como camada tampão. Uma melhor performance foi conseguida usando as condições de deposição anteriormente referidas, resultando numa eficiência de 10.01%, factor de forma de 0.63, tensão de circuito aberto de 0.88 V e densidade de corrente de curto-circuito de 17.85 mA/cm2. Este feito vai de encontro aos valores conseguidos no estado-da-arte desta tecnologia, demonstrado a potencialidade dos métodos de deposição física para aplicações como HTL.Mendes, ManuelMenda, UgurRUNMoniz, Mariana Peyró2022-09-15T12:06:35Z2021-012021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/143741enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:05:04Zoai:run.unl.pt:10362/143741Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:35:43.127902Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
title NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
spellingShingle NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
Moniz, Mariana Peyró
Thin film photovoltaics
Perovskite solar cells
Hole transport layer
rf-sputtered NiOx
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
title_full NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
title_fullStr NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
title_full_unstemmed NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
title_sort NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
author Moniz, Mariana Peyró
author_facet Moniz, Mariana Peyró
author_role author
dc.contributor.none.fl_str_mv Mendes, Manuel
Menda, Ugur
RUN
dc.contributor.author.fl_str_mv Moniz, Mariana Peyró
dc.subject.por.fl_str_mv Thin film photovoltaics
Perovskite solar cells
Hole transport layer
rf-sputtered NiOx
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic Thin film photovoltaics
Perovskite solar cells
Hole transport layer
rf-sputtered NiOx
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description In the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
2021-01-01T00:00:00Z
2022-09-15T12:06:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/143741
url http://hdl.handle.net/10362/143741
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596819152568320