NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/143741 |
Summary: | In the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application. |
id |
RCAP_c7f7a260748c04f04b2d2918025d637b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143741 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted ArchitectureThin film photovoltaicsPerovskite solar cellsHole transport layerrf-sputtered NiOxDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaIn the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application.No mundo da energia fotovoltaica, as células solares de perovskite (PSCs) estão num caminho muito promissor de desenvolvimento tecnológico. A sua progressão em eficiência tem sido excepcionalmente rápida, de 3.8% para 25.5% (2020) em apenas 11 anos. Apesar da importância da camada activa de perovskite, a optimização das PSCs depende também da optimização das camadas condutoras de cargas, sendo a camada transportadora de buracos (HTL), aquela que precisa de mais desenvolvimento ao nível da investigação. Nesta tese, um estudo é feito à cerca de filmes finos de NiOx para a sua aplicação como HTLs em PSCs invertidas (com estrutura p-i-n), motivado não só pelo desempenho e fiabilidade já conhecidos na utilização de NiOx em PSCs, mas também, pelo seu baixo custo em comparação com outros materiais do estado-da-arte desta tecnologia (ex.: Spiro-MeOTAD). Neste estudo são investigados e optimizados filmes finos de NiOx depositados por pulverização catódica induzida por rf. Estes filmes são analisados por diferentes métodos de caracterização como, espectroscopia de UV-Vis-NIR, difracção de raio-X e microscopia de força atómica. A partir desta análise, um conjunto de condições de deposição, foram seleccionadas para a integração dos filmes finos de NiOx em PSCs: pressão de árgon de 4×10-3 mbar, potência de rf de 100 W, e temperatura do substrato de 200 ˚C. PSCs foram depositadas sobre o HTL desenvolvido, usando MAPbI3 como camada activa, PCBM como camada transportadora de electrões (ETL), e BCP como camada tampão. Uma melhor performance foi conseguida usando as condições de deposição anteriormente referidas, resultando numa eficiência de 10.01%, factor de forma de 0.63, tensão de circuito aberto de 0.88 V e densidade de corrente de curto-circuito de 17.85 mA/cm2. Este feito vai de encontro aos valores conseguidos no estado-da-arte desta tecnologia, demonstrado a potencialidade dos métodos de deposição física para aplicações como HTL.Mendes, ManuelMenda, UgurRUNMoniz, Mariana Peyró2022-09-15T12:06:35Z2021-012021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/143741enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:05:04Zoai:run.unl.pt:10362/143741Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:35:43.127902Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
title |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
spellingShingle |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture Moniz, Mariana Peyró Thin film photovoltaics Perovskite solar cells Hole transport layer rf-sputtered NiOx Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
title_short |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
title_full |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
title_fullStr |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
title_full_unstemmed |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
title_sort |
NiOx Hole Transport Layer Optimization for Perovskite Solar Cells with Inverted Architecture |
author |
Moniz, Mariana Peyró |
author_facet |
Moniz, Mariana Peyró |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mendes, Manuel Menda, Ugur RUN |
dc.contributor.author.fl_str_mv |
Moniz, Mariana Peyró |
dc.subject.por.fl_str_mv |
Thin film photovoltaics Perovskite solar cells Hole transport layer rf-sputtered NiOx Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
topic |
Thin film photovoltaics Perovskite solar cells Hole transport layer rf-sputtered NiOx Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
description |
In the world of photovoltaic energy, perovskite solar cells (PSCs) are on a very promising path of technological development, since their efficiency progression has been, and still is, quite fast, rising from 3.8% to 25.5% (2020) in only 11 years. Despite the obvious significance of the perovskite absorber layer, the optimization of PSCs also strongly depends on the selective charge transport layers of their hetero-junction architecture, being the hole transport layer (HTL) the one critically needing most research-oriented development. In this thesis, a study was made on the fabrication of NiOx thin-films for their application as HTLs in inverted PSCs (p-i-n layer structure), motivated not only by the proven performance and reliability of NiOx for PSCs but also by its much lower cost relative to other state-of-the-art materials (e.g. Spiro-MeOTAD). With the inverted cell structure, the HTL is deposited prior to the perovskite, thereby allowing the exploration of a broad range of patterning techniques. Here we investigated and optimized NiOx films deposited by rf-sputtering. The fabricated films were analysed by different characterization methods, as UV-Vis-NIR spectrophotometry, X-ray diffraction, and atomic force microscopy. From these analyses, a set of conditions was selected for the integration of the NiOx thin-film in PSCs: 4×10-3 mbar argon pressure, 100 W as rf-power, and 200 ˚C deposition temperature. Batches of PSCs were built over our developed HTLs, chiefly using MAPbI3 active layer, PCBM electron transport layer (ETL), and a BCP buffer layer. The best performance was attained with NiOx deposited with the aforementioned optimized sputtering conditions, resulting in a power conversion efficiency of 10.01%, fill factor of 0.63, open circuit voltage of 0.88V, and short-circuit current density of 17.85 mA/cm2. This achievement is among the state-of-the-art for this class of inverted PSCs, demonstrating the potentialities of physical deposition methods for the HTL application. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 2021-01-01T00:00:00Z 2022-09-15T12:06:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143741 |
url |
http://hdl.handle.net/10362/143741 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596819152568320 |