Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/63456 |
Summary: | This study reports the development of a direct simulation code for solid spheres moving through viscoelastic fluids with a range of different Theological behaviors. The numerical algorithm was implemented on an open source finite-volume solver coupled with an immersed boundary method, and is able to perform fully-resolved simulations, wherein all flow scales associated with the particle motion are resolved. The formulation employed exploits the log-conformation tensor to avoid high Weissenberg number issues when calculating the polymeric extra stress. A number of benchmark flows were simulated using this method, to assess the accuracy of the newly developed solver. First, the sedimentation of a sphere in a bounded domain surrounded by either Newtonian or viscoelastic fluid was computed, and the numerical results were verified by comparison with experimental and computational data from the literature. Additionally, the spatial and temporal accuracies of the algorithm were evaluated, and different transient and advection discretization schemes were investigated. Second, the rotation of a sphere in a homogeneous shear flow was studied, and again the numerical results obtained were compared to those from the literature. Good agreement is obtained for the variation in the particle rotation rate as a function of Weissenberg number, using both the newly implemented algorithm and an alternative fixed-mesh approach. Finally, the cross-stream migration of a neutrally buoyant sphere in a steady Poiseuille flow, consisting of either a Newtonian or viscoelastic suspending fluid was investigated. For the Newtonian fluid good agreement was obtained for the particle equilibrium position when compared to the well known Segre-Silberberg effect, and for the viscoelastic fluid the effect of the retardation ratio on the final particle equilibrium position was studied. Additionally, the newly-developed solver capabilities were tested to study the shear-induced particle alignment in wall-bounded Newtonian and viscoelastic fluids. The r |
id |
RCAP_c6f6f5f38df8e0260b4a573569ae7fc1 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/63456 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary methodParticle-laden flowViscoelastic fluidFinite volume methodImmersed boundary methodFully resolved simulationsScience & TechnologyThis study reports the development of a direct simulation code for solid spheres moving through viscoelastic fluids with a range of different Theological behaviors. The numerical algorithm was implemented on an open source finite-volume solver coupled with an immersed boundary method, and is able to perform fully-resolved simulations, wherein all flow scales associated with the particle motion are resolved. The formulation employed exploits the log-conformation tensor to avoid high Weissenberg number issues when calculating the polymeric extra stress. A number of benchmark flows were simulated using this method, to assess the accuracy of the newly developed solver. First, the sedimentation of a sphere in a bounded domain surrounded by either Newtonian or viscoelastic fluid was computed, and the numerical results were verified by comparison with experimental and computational data from the literature. Additionally, the spatial and temporal accuracies of the algorithm were evaluated, and different transient and advection discretization schemes were investigated. Second, the rotation of a sphere in a homogeneous shear flow was studied, and again the numerical results obtained were compared to those from the literature. Good agreement is obtained for the variation in the particle rotation rate as a function of Weissenberg number, using both the newly implemented algorithm and an alternative fixed-mesh approach. Finally, the cross-stream migration of a neutrally buoyant sphere in a steady Poiseuille flow, consisting of either a Newtonian or viscoelastic suspending fluid was investigated. For the Newtonian fluid good agreement was obtained for the particle equilibrium position when compared to the well known Segre-Silberberg effect, and for the viscoelastic fluid the effect of the retardation ratio on the final particle equilibrium position was studied. Additionally, the newly-developed solver capabilities were tested to study the shear-induced particle alignment in wall-bounded Newtonian and viscoelastic fluids. The rThis work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT - Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013 as well as by the MIT Portugal Program (MPP). The authors would like to acknowledge the Minho University cluster under the project Search-ON2: Revitalization of HPC infrastructure of UMinho (NORTE-07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2-0 Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Additionally, the authors would like to acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. http://www.tacc.utexas.edu Finally, the authors thank Bruno Santos from FSD blueCAPE Lda for insightful comments regarding the usage of the TACC resources.Elsevier ScienceUniversidade do MinhoFernandes, C.Faroughi, S. A.Carneiro, O. S.Nóbrega, J. M.McKinley, G. H.20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/63456eng0377-025710.1016/j.jnnfm.2019.02.007info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:45:27Zoai:repositorium.sdum.uminho.pt:1822/63456Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:39:40.525616Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
title |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
spellingShingle |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method Fernandes, C. Particle-laden flow Viscoelastic fluid Finite volume method Immersed boundary method Fully resolved simulations Science & Technology |
title_short |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
title_full |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
title_fullStr |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
title_full_unstemmed |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
title_sort |
Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method |
author |
Fernandes, C. |
author_facet |
Fernandes, C. Faroughi, S. A. Carneiro, O. S. Nóbrega, J. M. McKinley, G. H. |
author_role |
author |
author2 |
Faroughi, S. A. Carneiro, O. S. Nóbrega, J. M. McKinley, G. H. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Fernandes, C. Faroughi, S. A. Carneiro, O. S. Nóbrega, J. M. McKinley, G. H. |
dc.subject.por.fl_str_mv |
Particle-laden flow Viscoelastic fluid Finite volume method Immersed boundary method Fully resolved simulations Science & Technology |
topic |
Particle-laden flow Viscoelastic fluid Finite volume method Immersed boundary method Fully resolved simulations Science & Technology |
description |
This study reports the development of a direct simulation code for solid spheres moving through viscoelastic fluids with a range of different Theological behaviors. The numerical algorithm was implemented on an open source finite-volume solver coupled with an immersed boundary method, and is able to perform fully-resolved simulations, wherein all flow scales associated with the particle motion are resolved. The formulation employed exploits the log-conformation tensor to avoid high Weissenberg number issues when calculating the polymeric extra stress. A number of benchmark flows were simulated using this method, to assess the accuracy of the newly developed solver. First, the sedimentation of a sphere in a bounded domain surrounded by either Newtonian or viscoelastic fluid was computed, and the numerical results were verified by comparison with experimental and computational data from the literature. Additionally, the spatial and temporal accuracies of the algorithm were evaluated, and different transient and advection discretization schemes were investigated. Second, the rotation of a sphere in a homogeneous shear flow was studied, and again the numerical results obtained were compared to those from the literature. Good agreement is obtained for the variation in the particle rotation rate as a function of Weissenberg number, using both the newly implemented algorithm and an alternative fixed-mesh approach. Finally, the cross-stream migration of a neutrally buoyant sphere in a steady Poiseuille flow, consisting of either a Newtonian or viscoelastic suspending fluid was investigated. For the Newtonian fluid good agreement was obtained for the particle equilibrium position when compared to the well known Segre-Silberberg effect, and for the viscoelastic fluid the effect of the retardation ratio on the final particle equilibrium position was studied. Additionally, the newly-developed solver capabilities were tested to study the shear-induced particle alignment in wall-bounded Newtonian and viscoelastic fluids. The r |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/63456 |
url |
https://hdl.handle.net/1822/63456 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0377-0257 10.1016/j.jnnfm.2019.02.007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595456815366144 |