Predictive Maintenance Support System in Industry 4.0 Scenario
Main Author: | |
---|---|
Publication Date: | 2020 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10216/132743 |
Summary: | The fourth industrial revolution that is being witnessed nowadays, also known as Industry 4.0, is heavily related to the digitization of manufacturing systems and the integration of different technologies to optimize manufacturing. By combining data acquisition using specific sensors and machine learning algorithms to analyze this data and predict a failure before it happens, Predictive Maintenance is a critical tool to implement towards reducing downtime due to unpredicted stoppages caused by malfunctions. Based on the reality of Commercial Specialty Tires factory at Continental Mabor - Indústria de Pneus, S.A., the present work describes several problems faced regarding equipment maintenance. Taking advantage of the information gathered from studying the processes incorporated in the factory, it is designed a solution model for applying predictive maintenance in these processes. The model is divided into two primary layers, hardware, and software. Concerning hardware, sensors and respective applications are delineated. In terms of software, techniques of data analysis namely machine learning algorithms are described so that the collected data is studied to detect possible failures. |
id |
RCAP_c6ac71c3352f4db5c213e84af7c02bbd |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/132743 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Predictive Maintenance Support System in Industry 4.0 ScenarioEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringThe fourth industrial revolution that is being witnessed nowadays, also known as Industry 4.0, is heavily related to the digitization of manufacturing systems and the integration of different technologies to optimize manufacturing. By combining data acquisition using specific sensors and machine learning algorithms to analyze this data and predict a failure before it happens, Predictive Maintenance is a critical tool to implement towards reducing downtime due to unpredicted stoppages caused by malfunctions. Based on the reality of Commercial Specialty Tires factory at Continental Mabor - Indústria de Pneus, S.A., the present work describes several problems faced regarding equipment maintenance. Taking advantage of the information gathered from studying the processes incorporated in the factory, it is designed a solution model for applying predictive maintenance in these processes. The model is divided into two primary layers, hardware, and software. Concerning hardware, sensors and respective applications are delineated. In terms of software, techniques of data analysis namely machine learning algorithms are described so that the collected data is studied to detect possible failures.2020-07-232020-07-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/132743TID:202594785engRodrigo Ardachessian Costainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:05:56Zoai:repositorio-aberto.up.pt:10216/132743Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:36:59.637157Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Predictive Maintenance Support System in Industry 4.0 Scenario |
title |
Predictive Maintenance Support System in Industry 4.0 Scenario |
spellingShingle |
Predictive Maintenance Support System in Industry 4.0 Scenario Rodrigo Ardachessian Costa Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
Predictive Maintenance Support System in Industry 4.0 Scenario |
title_full |
Predictive Maintenance Support System in Industry 4.0 Scenario |
title_fullStr |
Predictive Maintenance Support System in Industry 4.0 Scenario |
title_full_unstemmed |
Predictive Maintenance Support System in Industry 4.0 Scenario |
title_sort |
Predictive Maintenance Support System in Industry 4.0 Scenario |
author |
Rodrigo Ardachessian Costa |
author_facet |
Rodrigo Ardachessian Costa |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rodrigo Ardachessian Costa |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
The fourth industrial revolution that is being witnessed nowadays, also known as Industry 4.0, is heavily related to the digitization of manufacturing systems and the integration of different technologies to optimize manufacturing. By combining data acquisition using specific sensors and machine learning algorithms to analyze this data and predict a failure before it happens, Predictive Maintenance is a critical tool to implement towards reducing downtime due to unpredicted stoppages caused by malfunctions. Based on the reality of Commercial Specialty Tires factory at Continental Mabor - Indústria de Pneus, S.A., the present work describes several problems faced regarding equipment maintenance. Taking advantage of the information gathered from studying the processes incorporated in the factory, it is designed a solution model for applying predictive maintenance in these processes. The model is divided into two primary layers, hardware, and software. Concerning hardware, sensors and respective applications are delineated. In terms of software, techniques of data analysis namely machine learning algorithms are described so that the collected data is studied to detect possible failures. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-23 2020-07-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/132743 TID:202594785 |
url |
https://hdl.handle.net/10216/132743 |
identifier_str_mv |
TID:202594785 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599768848236544 |