Analog flat-level circuit synthesis with genetic algorithms

Bibliographic Details
Main Author: Gomes, Miguel
Publication Date: 2024
Other Authors: Tavares, Rui, Goes, João
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.21/17846
Summary: This paper proposes new techniques for automatic simulation-based analog circuit synthesis using genetic algorithms. This is intended to contribute to the set of electronic design automation tools that use genetic algorithms in circuit synthesis, especially those that use the simulator-in-the-loop paradigm. In this study, a genetic algorithm was employed as the generation engine for analog circuits, and variable-length chromosomes were used to describe circuit topology. The entire process is carried out on a flat level (device level), i.e. using the transistor and other elementary devices (e.g. resistors) as the basic elementary blocks. Circuit synthesis is accomplished without any knowledge of previously defined topologies (or analog block cells). Three techniques are presented for analog circuit synthesis that are incorporated in the genetic algorithm, which contribute to its robustness, leading to better and faster results. These techniques can be summarized as follows: 1) adaptive probability of chromosome acceptance, 2) removal of redundant or useless components, and 3) segmented evolution. The automatic process starts with the circuit input and output specifications and proceeds with the evolution of both circuit topology and component sizing. The results shown in this paper include a 40 dB DC gain amplifier, which, when evaluated with SPECTRE/CADENCE 6.0, using a standard 130 nm technology, with a load capacitor of 10 pF, has a gain of 102 V/V, a GBW product of 70 MHz, and a figure of merit of 1436 MHz.pF/mW.
id RCAP_c61a85e9de88d64ee5168778cc3c85bb
oai_identifier_str oai:repositorio.ipl.pt:10400.21/17846
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Analog flat-level circuit synthesis with genetic algorithmsAutomatic topology generationGenetic algorithmElectronic design automationVariable length chromosomeSimulator-in-the-loopAnalog circuit synthesisNgspiceThis paper proposes new techniques for automatic simulation-based analog circuit synthesis using genetic algorithms. This is intended to contribute to the set of electronic design automation tools that use genetic algorithms in circuit synthesis, especially those that use the simulator-in-the-loop paradigm. In this study, a genetic algorithm was employed as the generation engine for analog circuits, and variable-length chromosomes were used to describe circuit topology. The entire process is carried out on a flat level (device level), i.e. using the transistor and other elementary devices (e.g. resistors) as the basic elementary blocks. Circuit synthesis is accomplished without any knowledge of previously defined topologies (or analog block cells). Three techniques are presented for analog circuit synthesis that are incorporated in the genetic algorithm, which contribute to its robustness, leading to better and faster results. These techniques can be summarized as follows: 1) adaptive probability of chromosome acceptance, 2) removal of redundant or useless components, and 3) segmented evolution. The automatic process starts with the circuit input and output specifications and proceeds with the evolution of both circuit topology and component sizing. The results shown in this paper include a 40 dB DC gain amplifier, which, when evaluated with SPECTRE/CADENCE 6.0, using a standard 130 nm technology, with a load capacitor of 10 pF, has a gain of 102 V/V, a GBW product of 70 MHz, and a figure of merit of 1436 MHz.pF/mW.IEEERCIPLGomes, MiguelTavares, RuiGoes, João2024-11-06T11:09:56Z2024-08-192024-08-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/17846eng10.1109/ACCESS.2024.3446308info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T10:31:30Zoai:repositorio.ipl.pt:10400.21/17846Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:06:51.234405Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Analog flat-level circuit synthesis with genetic algorithms
title Analog flat-level circuit synthesis with genetic algorithms
spellingShingle Analog flat-level circuit synthesis with genetic algorithms
Gomes, Miguel
Automatic topology generation
Genetic algorithm
Electronic design automation
Variable length chromosome
Simulator-in-the-loop
Analog circuit synthesis
Ngspice
title_short Analog flat-level circuit synthesis with genetic algorithms
title_full Analog flat-level circuit synthesis with genetic algorithms
title_fullStr Analog flat-level circuit synthesis with genetic algorithms
title_full_unstemmed Analog flat-level circuit synthesis with genetic algorithms
title_sort Analog flat-level circuit synthesis with genetic algorithms
author Gomes, Miguel
author_facet Gomes, Miguel
Tavares, Rui
Goes, João
author_role author
author2 Tavares, Rui
Goes, João
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Gomes, Miguel
Tavares, Rui
Goes, João
dc.subject.por.fl_str_mv Automatic topology generation
Genetic algorithm
Electronic design automation
Variable length chromosome
Simulator-in-the-loop
Analog circuit synthesis
Ngspice
topic Automatic topology generation
Genetic algorithm
Electronic design automation
Variable length chromosome
Simulator-in-the-loop
Analog circuit synthesis
Ngspice
description This paper proposes new techniques for automatic simulation-based analog circuit synthesis using genetic algorithms. This is intended to contribute to the set of electronic design automation tools that use genetic algorithms in circuit synthesis, especially those that use the simulator-in-the-loop paradigm. In this study, a genetic algorithm was employed as the generation engine for analog circuits, and variable-length chromosomes were used to describe circuit topology. The entire process is carried out on a flat level (device level), i.e. using the transistor and other elementary devices (e.g. resistors) as the basic elementary blocks. Circuit synthesis is accomplished without any knowledge of previously defined topologies (or analog block cells). Three techniques are presented for analog circuit synthesis that are incorporated in the genetic algorithm, which contribute to its robustness, leading to better and faster results. These techniques can be summarized as follows: 1) adaptive probability of chromosome acceptance, 2) removal of redundant or useless components, and 3) segmented evolution. The automatic process starts with the circuit input and output specifications and proceeds with the evolution of both circuit topology and component sizing. The results shown in this paper include a 40 dB DC gain amplifier, which, when evaluated with SPECTRE/CADENCE 6.0, using a standard 130 nm technology, with a load capacitor of 10 pF, has a gain of 102 V/V, a GBW product of 70 MHz, and a figure of merit of 1436 MHz.pF/mW.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-06T11:09:56Z
2024-08-19
2024-08-19T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/17846
url http://hdl.handle.net/10400.21/17846
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/ACCESS.2024.3446308
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598498142945280