Generalising KAT to verify weighted computations

Bibliographic Details
Main Author: Gomes, Leandro
Publication Date: 2019
Other Authors: Madeira, Alexandre, Barbosa, L. S.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/69188
Summary: Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are de ned: FSET (T ), FREL(K; T ) and FLANG(K; T ) over complete residuated lattices K and T , and M(n;A) over a GKAT or I-GKAT A. As a nal exercise, the paper discusses some program equivalence proofs in a graded context.
id RCAP_c60649f016fe2d78f834872d433d657e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/69188
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Generalising KAT to verify weighted computationsKleene algebraFuzzy relationsHoare logicGraded testsCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyKleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are de ned: FSET (T ), FREL(K; T ) and FLANG(K; T ) over complete residuated lattices K and T , and M(n;A) over a GKAT or I-GKAT A. As a nal exercise, the paper discusses some program equivalence proofs in a graded context.POCI-01-0145-FEDER-03094, NORTE-01-0145-FEDER-000037. ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947. This paper is also a result of the project SmartEGOV, NORTE-01-0145-FEDER-000037. The second author is supported in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Portuguese Law 57/2017, of July 19, at CIDMA (Centro de Investigação e Desenvolvimento em Matemática e Aplicações) UID/MAT/04106/2019.University Alexandru Ioan Cuza IasiUniversidade do MinhoGomes, LeandroMadeira, AlexandreBarbosa, L. S.20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/69188eng1843-81212248-269510.7561/SACS.2019.2.141https://www.info.uaic.ro/en/sacs_articles/generalising-kat-to-verify-weighted-computations/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:17:35Zoai:repositorium.sdum.uminho.pt:1822/69188Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:44:37.973335Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Generalising KAT to verify weighted computations
title Generalising KAT to verify weighted computations
spellingShingle Generalising KAT to verify weighted computations
Gomes, Leandro
Kleene algebra
Fuzzy relations
Hoare logic
Graded tests
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Generalising KAT to verify weighted computations
title_full Generalising KAT to verify weighted computations
title_fullStr Generalising KAT to verify weighted computations
title_full_unstemmed Generalising KAT to verify weighted computations
title_sort Generalising KAT to verify weighted computations
author Gomes, Leandro
author_facet Gomes, Leandro
Madeira, Alexandre
Barbosa, L. S.
author_role author
author2 Madeira, Alexandre
Barbosa, L. S.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gomes, Leandro
Madeira, Alexandre
Barbosa, L. S.
dc.subject.por.fl_str_mv Kleene algebra
Fuzzy relations
Hoare logic
Graded tests
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Kleene algebra
Fuzzy relations
Hoare logic
Graded tests
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are de ned: FSET (T ), FREL(K; T ) and FLANG(K; T ) over complete residuated lattices K and T , and M(n;A) over a GKAT or I-GKAT A. As a nal exercise, the paper discusses some program equivalence proofs in a graded context.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/69188
url http://hdl.handle.net/1822/69188
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1843-8121
2248-2695
10.7561/SACS.2019.2.141
https://www.info.uaic.ro/en/sacs_articles/generalising-kat-to-verify-weighted-computations/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University Alexandru Ioan Cuza Iasi
publisher.none.fl_str_mv University Alexandru Ioan Cuza Iasi
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594855398309888