senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/10342 |
Summary: | This article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets. |
id |
RCAP_c5d4883c0c1b8f4d01d233bac0588f13 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/10342 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis taskopinion miningsentiment analysisNLPMachine LearningThis article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets.Association for Computational Linguistics2014-01-29T17:55:18Z2014-01-292013-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/10342http://hdl.handle.net/10174/10342engJosé Saias and Hilário Fernandes. senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 508-512, Atlanta, Georgia, USA, June 2013. Association for Computational Linguisticshttp://aclweb.org/anthology//S/S13/S13-2084.pdfjsaias@uevora.pthilario.fernandes@cortex-intelligence.com283Saias, joseFernandes, Hilárioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:53:03Zoai:dspace.uevora.pt:10174/10342Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:00:58.510270Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
title |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
spellingShingle |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task Saias, jose opinion mining sentiment analysis NLP Machine Learning |
title_short |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
title_full |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
title_fullStr |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
title_full_unstemmed |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
title_sort |
senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task |
author |
Saias, jose |
author_facet |
Saias, jose Fernandes, Hilário |
author_role |
author |
author2 |
Fernandes, Hilário |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Saias, jose Fernandes, Hilário |
dc.subject.por.fl_str_mv |
opinion mining sentiment analysis NLP Machine Learning |
topic |
opinion mining sentiment analysis NLP Machine Learning |
description |
This article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-01T00:00:00Z 2014-01-29T17:55:18Z 2014-01-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/10342 http://hdl.handle.net/10174/10342 |
url |
http://hdl.handle.net/10174/10342 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
José Saias and Hilário Fernandes. senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 508-512, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics http://aclweb.org/anthology//S/S13/S13-2084.pdf jsaias@uevora.pt hilario.fernandes@cortex-intelligence.com 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association for Computational Linguistics |
publisher.none.fl_str_mv |
Association for Computational Linguistics |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592437150318592 |