Novel and rare large deletions in the globin gene clusters causing different types of thalassemia

Bibliographic Details
Main Author: Coelho, Andreia
Publication Date: 2011
Other Authors: Fernandes, Emília, Batalha-Reis, Ana, Sonesson, Annika, Picanço, Isabel, Miranda, Armandina, Faustino, Paula
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.18/318
Summary: The major component of the red blood cells is hemoglobin A which consists of 2α- and 2β-globin chains encoded by α- and β-globin genes located in two different gene clusters (16p13.3 and 11p.15.5, respectively). Molecular defects (usually point mutation or short deletion) that give rise to a quantitative reduction of the corresponding globin chain, result in a hereditary hypochromic and microcytic anemia called thalassemia. However, rarely, the molecular basis of the pathology could be a large deletion affecting several globin genes and/or their distal regulatory sequence. Four patients with hematological phenotypes suggestive of thalassemia, in whom no globinic molecular abnormalities had been found by standard diagnostic procedures, were screened for deletions in the telomeric region of chromosome 16 and 11, by Multiplex Ligation-dependent Probe Amplification (MLPA) assay. To further characterize the breakpoints of the deletions found, we employed synthetic MLPA probemixes designed in our laboratory, as well as PCR and DNA sequencing. We identified two cases of α-thalassemia caused by two distinct large deletions which remove all α-like structural genes and their distal regulatory sites: both are telomeric, one presents at least 271.14 kb of length and the other, at least, 231 kb. Concerning β-globin cluster screening, two deletions were found: one has at least 186 kb, encloses the entire cluster and its locus control region, and gives rise to a εγδβ0-thalassemia. The other presents at least 3 kb, has its 5’ breakpoint located within the second intron of the β-globin gene and its 3’ end within the L1 repetitive region of the cluster. Both α- and β-cluster larger deletions are novel and were named --CMB/αα and PORTUGUESE εγδβ0-Thal, respectively. The other two smaller deletions, given the uncertainty regarding their breakpoints, might be similar to others already published. In all patients, genotypes are well correlated with the different thalassemic phenotypes presented. MLPA proves to be a useful technique to identify known and unknown large deletions affecting globin gene clusters.
id RCAP_c3eefca91fd7f0de8e0b8785633f97f7
oai_identifier_str oai:repositorio.insa.pt:10400.18/318
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Novel and rare large deletions in the globin gene clusters causing different types of thalassemiaThalassemiaDeletionGlobin genesMLPADoenças GenéticasPatologias do Glóbulo VermelhoThe major component of the red blood cells is hemoglobin A which consists of 2α- and 2β-globin chains encoded by α- and β-globin genes located in two different gene clusters (16p13.3 and 11p.15.5, respectively). Molecular defects (usually point mutation or short deletion) that give rise to a quantitative reduction of the corresponding globin chain, result in a hereditary hypochromic and microcytic anemia called thalassemia. However, rarely, the molecular basis of the pathology could be a large deletion affecting several globin genes and/or their distal regulatory sequence. Four patients with hematological phenotypes suggestive of thalassemia, in whom no globinic molecular abnormalities had been found by standard diagnostic procedures, were screened for deletions in the telomeric region of chromosome 16 and 11, by Multiplex Ligation-dependent Probe Amplification (MLPA) assay. To further characterize the breakpoints of the deletions found, we employed synthetic MLPA probemixes designed in our laboratory, as well as PCR and DNA sequencing. We identified two cases of α-thalassemia caused by two distinct large deletions which remove all α-like structural genes and their distal regulatory sites: both are telomeric, one presents at least 271.14 kb of length and the other, at least, 231 kb. Concerning β-globin cluster screening, two deletions were found: one has at least 186 kb, encloses the entire cluster and its locus control region, and gives rise to a εγδβ0-thalassemia. The other presents at least 3 kb, has its 5’ breakpoint located within the second intron of the β-globin gene and its 3’ end within the L1 repetitive region of the cluster. Both α- and β-cluster larger deletions are novel and were named --CMB/αα and PORTUGUESE εγδβ0-Thal, respectively. The other two smaller deletions, given the uncertainty regarding their breakpoints, might be similar to others already published. In all patients, genotypes are well correlated with the different thalassemic phenotypes presented. MLPA proves to be a useful technique to identify known and unknown large deletions affecting globin gene clusters.Instituto Nacional de Saúde Doutor Ricardo Jorge, IPRepositório Científico do Instituto Nacional de SaúdeCoelho, AndreiaFernandes, EmíliaBatalha-Reis, AnaSonesson, AnnikaPicanço, IsabelMiranda, ArmandinaFaustino, Paula2011-11-14T17:05:30Z2011-112011-11-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.18/318enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:14:47Zoai:repositorio.insa.pt:10400.18/318Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:29:02.186323Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
title Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
spellingShingle Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
Coelho, Andreia
Thalassemia
Deletion
Globin genes
MLPA
Doenças Genéticas
Patologias do Glóbulo Vermelho
title_short Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
title_full Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
title_fullStr Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
title_full_unstemmed Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
title_sort Novel and rare large deletions in the globin gene clusters causing different types of thalassemia
author Coelho, Andreia
author_facet Coelho, Andreia
Fernandes, Emília
Batalha-Reis, Ana
Sonesson, Annika
Picanço, Isabel
Miranda, Armandina
Faustino, Paula
author_role author
author2 Fernandes, Emília
Batalha-Reis, Ana
Sonesson, Annika
Picanço, Isabel
Miranda, Armandina
Faustino, Paula
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Coelho, Andreia
Fernandes, Emília
Batalha-Reis, Ana
Sonesson, Annika
Picanço, Isabel
Miranda, Armandina
Faustino, Paula
dc.subject.por.fl_str_mv Thalassemia
Deletion
Globin genes
MLPA
Doenças Genéticas
Patologias do Glóbulo Vermelho
topic Thalassemia
Deletion
Globin genes
MLPA
Doenças Genéticas
Patologias do Glóbulo Vermelho
description The major component of the red blood cells is hemoglobin A which consists of 2α- and 2β-globin chains encoded by α- and β-globin genes located in two different gene clusters (16p13.3 and 11p.15.5, respectively). Molecular defects (usually point mutation or short deletion) that give rise to a quantitative reduction of the corresponding globin chain, result in a hereditary hypochromic and microcytic anemia called thalassemia. However, rarely, the molecular basis of the pathology could be a large deletion affecting several globin genes and/or their distal regulatory sequence. Four patients with hematological phenotypes suggestive of thalassemia, in whom no globinic molecular abnormalities had been found by standard diagnostic procedures, were screened for deletions in the telomeric region of chromosome 16 and 11, by Multiplex Ligation-dependent Probe Amplification (MLPA) assay. To further characterize the breakpoints of the deletions found, we employed synthetic MLPA probemixes designed in our laboratory, as well as PCR and DNA sequencing. We identified two cases of α-thalassemia caused by two distinct large deletions which remove all α-like structural genes and their distal regulatory sites: both are telomeric, one presents at least 271.14 kb of length and the other, at least, 231 kb. Concerning β-globin cluster screening, two deletions were found: one has at least 186 kb, encloses the entire cluster and its locus control region, and gives rise to a εγδβ0-thalassemia. The other presents at least 3 kb, has its 5’ breakpoint located within the second intron of the β-globin gene and its 3’ end within the L1 repetitive region of the cluster. Both α- and β-cluster larger deletions are novel and were named --CMB/αα and PORTUGUESE εγδβ0-Thal, respectively. The other two smaller deletions, given the uncertainty regarding their breakpoints, might be similar to others already published. In all patients, genotypes are well correlated with the different thalassemic phenotypes presented. MLPA proves to be a useful technique to identify known and unknown large deletions affecting globin gene clusters.
publishDate 2011
dc.date.none.fl_str_mv 2011-11-14T17:05:30Z
2011-11
2011-11-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/318
url http://hdl.handle.net/10400.18/318
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Nacional de Saúde Doutor Ricardo Jorge, IP
publisher.none.fl_str_mv Instituto Nacional de Saúde Doutor Ricardo Jorge, IP
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599297682145280