Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography

Detalhes bibliográficos
Autor(a) principal: Arafah, Rami
Data de Publicação: 2023
Outros Autores: Ribeiro, António E., Rodrigues, Alírio, Pais, Luís S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/29196
Resumo: The separation of nadolol racemates under high pH reversed-phase using both the fixed-bed (FB) and the simulated moving bed (SMB) preparative chromatographic techniques is reported after the previous published work [1] where the Waters XBridge C18 adsorbent and an ethanol:water:diethylamine solvent mixture were validated to allow the separation of the multicomponent feed mixture composed by four nadolol stereoisomers into two pure racemates (two pairs of enantiomers). In this work, the experimental preparative separations using one commercial fixed-bed preparative HPLC Azura system equipped with one sole column of preparative dimensions (30 mm ID × 250 mm L) and one labscale SMB apparatus (the FlexSMB-LSRE pilot unit) equipped with six semi-preparative columns (19 mm ID × 100 mm L) are presented. Both systems use the Waters XBridge C18 adsorbent of 10 μm particle diameter. The screening of the mobile phase composition elected the 30:70:0.1 (v/v/v) ethanol:water:diethylamine solvent mixture to perform both FB and SMB preparative operations. A large set of experimental, modelling and simulation results are presented, including pulses, measurement and modelling of the adsorption equilibrium isotherms, and its validation through breakthroughs measurements. The modelling and simulation steps allowed the prediction and the optimization of both the FB and SMB operating conditions. For FB, using a feed concentration of 9 g/L of an equimolar mixture of the two nadolol racemates, both were recovered almost pure (at least 99.9 %), with a global system productivity of 3.06 gfeed/(Lbed.hr) and a solvent consumption of 4.21 Lsolvent/gfeed. For SMB, the pilot unit’s pressure drops limits imposed a maximum internal flow-rate of only 5 mL/min and, for a nadolol feed concentration of 2 g/L, both racemates were recovered 100 % pure, with a system productivity of 0.13 gfeed/(Lbed.hr) and a solvent consumption of 6.19 Lsolvent/gfeed. Additional simulation results showed that a SMB preparative unit can perform the 9 g/L nadolol racemate separation with a system productivity of 3.61 gfeed/(Lbed.hr) and a solvent consumption of only 1.95 Lsolvent/gfeed using the same average internal flow-rate as in FB operation. Even better SMB productivities can still be obtained using the same feed or solvent flow-rates as in FB operation if the internal SMB flow-rates are allowed and not limited by the system pressure drop. The experimental results presented in this work validate the strategy of separating a four nadolol stereoisomers mixture into two pure nadolol racemates, each one composed by a pair of nadolol enantiomers, using an achiral C18 adsorbent through FB and SMB chromatographic techniques. Each nadolol racemate can later be purified into pure nadolol stereoisomers using standard binary chiral FB and SMB chromatography. In this way, this works introduces a real and experimental solution for the complete multicomponent preparative separation of the four nadolol stereoisomers.
id RCAP_c356b85d69e9a6d53406d2d0ce2679a9
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/29196
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatographyReversed-phase liquid chromatographyNadololMulticomponent separationFixed-bedSimulated moving bedThe separation of nadolol racemates under high pH reversed-phase using both the fixed-bed (FB) and the simulated moving bed (SMB) preparative chromatographic techniques is reported after the previous published work [1] where the Waters XBridge C18 adsorbent and an ethanol:water:diethylamine solvent mixture were validated to allow the separation of the multicomponent feed mixture composed by four nadolol stereoisomers into two pure racemates (two pairs of enantiomers). In this work, the experimental preparative separations using one commercial fixed-bed preparative HPLC Azura system equipped with one sole column of preparative dimensions (30 mm ID × 250 mm L) and one labscale SMB apparatus (the FlexSMB-LSRE pilot unit) equipped with six semi-preparative columns (19 mm ID × 100 mm L) are presented. Both systems use the Waters XBridge C18 adsorbent of 10 μm particle diameter. The screening of the mobile phase composition elected the 30:70:0.1 (v/v/v) ethanol:water:diethylamine solvent mixture to perform both FB and SMB preparative operations. A large set of experimental, modelling and simulation results are presented, including pulses, measurement and modelling of the adsorption equilibrium isotherms, and its validation through breakthroughs measurements. The modelling and simulation steps allowed the prediction and the optimization of both the FB and SMB operating conditions. For FB, using a feed concentration of 9 g/L of an equimolar mixture of the two nadolol racemates, both were recovered almost pure (at least 99.9 %), with a global system productivity of 3.06 gfeed/(Lbed.hr) and a solvent consumption of 4.21 Lsolvent/gfeed. For SMB, the pilot unit’s pressure drops limits imposed a maximum internal flow-rate of only 5 mL/min and, for a nadolol feed concentration of 2 g/L, both racemates were recovered 100 % pure, with a system productivity of 0.13 gfeed/(Lbed.hr) and a solvent consumption of 6.19 Lsolvent/gfeed. Additional simulation results showed that a SMB preparative unit can perform the 9 g/L nadolol racemate separation with a system productivity of 3.61 gfeed/(Lbed.hr) and a solvent consumption of only 1.95 Lsolvent/gfeed using the same average internal flow-rate as in FB operation. Even better SMB productivities can still be obtained using the same feed or solvent flow-rates as in FB operation if the internal SMB flow-rates are allowed and not limited by the system pressure drop. The experimental results presented in this work validate the strategy of separating a four nadolol stereoisomers mixture into two pure nadolol racemates, each one composed by a pair of nadolol enantiomers, using an achiral C18 adsorbent through FB and SMB chromatographic techniques. Each nadolol racemate can later be purified into pure nadolol stereoisomers using standard binary chiral FB and SMB chromatography. In this way, this works introduces a real and experimental solution for the complete multicomponent preparative separation of the four nadolol stereoisomers.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/ 2020) and SusTEC (LA/P/0007/2020). National funding by FCT, Foundation for Science and Technology, through the individual research grant (SFRH/BD/137966/2018) of Rami S. Arafah is also acknowledged.ElsevierBiblioteca Digital do IPBArafah, RamiRibeiro, António E.Rodrigues, AlírioPais, Luís S.2024-01-15T12:14:45Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/29196engArafah, Rami; Ribeiro, António E.; Rodrigues, Alírio; Pais, Luís S. (2023). Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography. Separation and Purification Technology. ISSN 1383-5866. 305, p.1-161383-586610.1016/j.seppur.2022.1225291873-3794info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:20:44Zoai:bibliotecadigital.ipb.pt:10198/29196Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:32:51.241680Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
title Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
spellingShingle Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
Arafah, Rami
Reversed-phase liquid chromatography
Nadolol
Multicomponent separation
Fixed-bed
Simulated moving bed
title_short Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
title_full Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
title_fullStr Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
title_full_unstemmed Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
title_sort Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography
author Arafah, Rami
author_facet Arafah, Rami
Ribeiro, António E.
Rodrigues, Alírio
Pais, Luís S.
author_role author
author2 Ribeiro, António E.
Rodrigues, Alírio
Pais, Luís S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Arafah, Rami
Ribeiro, António E.
Rodrigues, Alírio
Pais, Luís S.
dc.subject.por.fl_str_mv Reversed-phase liquid chromatography
Nadolol
Multicomponent separation
Fixed-bed
Simulated moving bed
topic Reversed-phase liquid chromatography
Nadolol
Multicomponent separation
Fixed-bed
Simulated moving bed
description The separation of nadolol racemates under high pH reversed-phase using both the fixed-bed (FB) and the simulated moving bed (SMB) preparative chromatographic techniques is reported after the previous published work [1] where the Waters XBridge C18 adsorbent and an ethanol:water:diethylamine solvent mixture were validated to allow the separation of the multicomponent feed mixture composed by four nadolol stereoisomers into two pure racemates (two pairs of enantiomers). In this work, the experimental preparative separations using one commercial fixed-bed preparative HPLC Azura system equipped with one sole column of preparative dimensions (30 mm ID × 250 mm L) and one labscale SMB apparatus (the FlexSMB-LSRE pilot unit) equipped with six semi-preparative columns (19 mm ID × 100 mm L) are presented. Both systems use the Waters XBridge C18 adsorbent of 10 μm particle diameter. The screening of the mobile phase composition elected the 30:70:0.1 (v/v/v) ethanol:water:diethylamine solvent mixture to perform both FB and SMB preparative operations. A large set of experimental, modelling and simulation results are presented, including pulses, measurement and modelling of the adsorption equilibrium isotherms, and its validation through breakthroughs measurements. The modelling and simulation steps allowed the prediction and the optimization of both the FB and SMB operating conditions. For FB, using a feed concentration of 9 g/L of an equimolar mixture of the two nadolol racemates, both were recovered almost pure (at least 99.9 %), with a global system productivity of 3.06 gfeed/(Lbed.hr) and a solvent consumption of 4.21 Lsolvent/gfeed. For SMB, the pilot unit’s pressure drops limits imposed a maximum internal flow-rate of only 5 mL/min and, for a nadolol feed concentration of 2 g/L, both racemates were recovered 100 % pure, with a system productivity of 0.13 gfeed/(Lbed.hr) and a solvent consumption of 6.19 Lsolvent/gfeed. Additional simulation results showed that a SMB preparative unit can perform the 9 g/L nadolol racemate separation with a system productivity of 3.61 gfeed/(Lbed.hr) and a solvent consumption of only 1.95 Lsolvent/gfeed using the same average internal flow-rate as in FB operation. Even better SMB productivities can still be obtained using the same feed or solvent flow-rates as in FB operation if the internal SMB flow-rates are allowed and not limited by the system pressure drop. The experimental results presented in this work validate the strategy of separating a four nadolol stereoisomers mixture into two pure nadolol racemates, each one composed by a pair of nadolol enantiomers, using an achiral C18 adsorbent through FB and SMB chromatographic techniques. Each nadolol racemate can later be purified into pure nadolol stereoisomers using standard binary chiral FB and SMB chromatography. In this way, this works introduces a real and experimental solution for the complete multicomponent preparative separation of the four nadolol stereoisomers.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-15T12:14:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/29196
url http://hdl.handle.net/10198/29196
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Arafah, Rami; Ribeiro, António E.; Rodrigues, Alírio; Pais, Luís S. (2023). Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography. Separation and Purification Technology. ISSN 1383-5866. 305, p.1-16
1383-5866
10.1016/j.seppur.2022.122529
1873-3794
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592913721819136