Usage of convolutional neural networks for identifying marine mammal individuals
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.13/5127 |
Summary: | Identifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals. |
id |
RCAP_c2d2c2d7f564837e0728e67048ada2b3 |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5127 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Usage of convolutional neural networks for identifying marine mammal individualsConvolutional neural networksDeep LearningMarine mammalsPhoto identificationObject detectionImage classificationRedes Neuronais ConvolucionaisDeep Learning (DL)Mamíferos marinhosIdentificação por fotosDeteção de objectosClassificação de imagensEngenharia Informática.Faculdade de Ciências Exatas e da EngenhariaIdentifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals.Radeta, MarkoDigitUMaGouveia, Jorge Miguel Vieira2023-04-20T11:02:24Z2023-02-072023-02-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/5127urn:tid:203266137enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T17:03:59Zoai:digituma.uma.pt:10400.13/5127Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:45:59.329637Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Usage of convolutional neural networks for identifying marine mammal individuals |
title |
Usage of convolutional neural networks for identifying marine mammal individuals |
spellingShingle |
Usage of convolutional neural networks for identifying marine mammal individuals Gouveia, Jorge Miguel Vieira Convolutional neural networks Deep Learning Marine mammals Photo identification Object detection Image classification Redes Neuronais Convolucionais Deep Learning (DL) Mamíferos marinhos Identificação por fotos Deteção de objectos Classificação de imagens Engenharia Informática . Faculdade de Ciências Exatas e da Engenharia |
title_short |
Usage of convolutional neural networks for identifying marine mammal individuals |
title_full |
Usage of convolutional neural networks for identifying marine mammal individuals |
title_fullStr |
Usage of convolutional neural networks for identifying marine mammal individuals |
title_full_unstemmed |
Usage of convolutional neural networks for identifying marine mammal individuals |
title_sort |
Usage of convolutional neural networks for identifying marine mammal individuals |
author |
Gouveia, Jorge Miguel Vieira |
author_facet |
Gouveia, Jorge Miguel Vieira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Radeta, Marko DigitUMa |
dc.contributor.author.fl_str_mv |
Gouveia, Jorge Miguel Vieira |
dc.subject.por.fl_str_mv |
Convolutional neural networks Deep Learning Marine mammals Photo identification Object detection Image classification Redes Neuronais Convolucionais Deep Learning (DL) Mamíferos marinhos Identificação por fotos Deteção de objectos Classificação de imagens Engenharia Informática . Faculdade de Ciências Exatas e da Engenharia |
topic |
Convolutional neural networks Deep Learning Marine mammals Photo identification Object detection Image classification Redes Neuronais Convolucionais Deep Learning (DL) Mamíferos marinhos Identificação por fotos Deteção de objectos Classificação de imagens Engenharia Informática . Faculdade de Ciências Exatas e da Engenharia |
description |
Identifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-20T11:02:24Z 2023-02-07 2023-02-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5127 urn:tid:203266137 |
url |
http://hdl.handle.net/10400.13/5127 |
identifier_str_mv |
urn:tid:203266137 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598851478454272 |