Usage of convolutional neural networks for identifying marine mammal individuals

Bibliographic Details
Main Author: Gouveia, Jorge Miguel Vieira
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.13/5127
Summary: Identifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals.
id RCAP_c2d2c2d7f564837e0728e67048ada2b3
oai_identifier_str oai:digituma.uma.pt:10400.13/5127
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Usage of convolutional neural networks for identifying marine mammal individualsConvolutional neural networksDeep LearningMarine mammalsPhoto identificationObject detectionImage classificationRedes Neuronais ConvolucionaisDeep Learning (DL)Mamíferos marinhosIdentificação por fotosDeteção de objectosClassificação de imagensEngenharia Informática.Faculdade de Ciências Exatas e da EngenhariaIdentifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals.Radeta, MarkoDigitUMaGouveia, Jorge Miguel Vieira2023-04-20T11:02:24Z2023-02-072023-02-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/5127urn:tid:203266137enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T17:03:59Zoai:digituma.uma.pt:10400.13/5127Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:45:59.329637Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Usage of convolutional neural networks for identifying marine mammal individuals
title Usage of convolutional neural networks for identifying marine mammal individuals
spellingShingle Usage of convolutional neural networks for identifying marine mammal individuals
Gouveia, Jorge Miguel Vieira
Convolutional neural networks
Deep Learning
Marine mammals
Photo identification
Object detection
Image classification
Redes Neuronais Convolucionais
Deep Learning (DL)
Mamíferos marinhos
Identificação por fotos
Deteção de objectos
Classificação de imagens
Engenharia Informática
.
Faculdade de Ciências Exatas e da Engenharia
title_short Usage of convolutional neural networks for identifying marine mammal individuals
title_full Usage of convolutional neural networks for identifying marine mammal individuals
title_fullStr Usage of convolutional neural networks for identifying marine mammal individuals
title_full_unstemmed Usage of convolutional neural networks for identifying marine mammal individuals
title_sort Usage of convolutional neural networks for identifying marine mammal individuals
author Gouveia, Jorge Miguel Vieira
author_facet Gouveia, Jorge Miguel Vieira
author_role author
dc.contributor.none.fl_str_mv Radeta, Marko
DigitUMa
dc.contributor.author.fl_str_mv Gouveia, Jorge Miguel Vieira
dc.subject.por.fl_str_mv Convolutional neural networks
Deep Learning
Marine mammals
Photo identification
Object detection
Image classification
Redes Neuronais Convolucionais
Deep Learning (DL)
Mamíferos marinhos
Identificação por fotos
Deteção de objectos
Classificação de imagens
Engenharia Informática
.
Faculdade de Ciências Exatas e da Engenharia
topic Convolutional neural networks
Deep Learning
Marine mammals
Photo identification
Object detection
Image classification
Redes Neuronais Convolucionais
Deep Learning (DL)
Mamíferos marinhos
Identificação por fotos
Deteção de objectos
Classificação de imagens
Engenharia Informática
.
Faculdade de Ciências Exatas e da Engenharia
description Identifying marine mammals is a common practice performed by whale-watching crew members. Typically, an experienced marine ecologist is the one who can identify not just the taxa, but also the individual. This process is however always done in the aftermath of data sampling, where the goal is to use photo identification and match the dorsal fins of individuals spotted at the different spatio-temporal scales. This dissertation provides the pipeline and addresses the chal lenges in the usage of Convolutional Neural Networks (CNNs) to discriminate marine mammal individuals, in this case (pilot whales) based on the dorsal fins. The dissertation uses as input the 1138 images dataset containing over 856 individuals, and through three experiments addresses the issues when discriminating such a high number of classes. In the first experiment, the dissertation studies the role of synthetic data augmentation in boosting model performance. In second, the dissertation benchmarks the existing state-of-the-art convolutional neural network architectures. In third, the dissertation focuses on discriminating other features from dorsal fins to identify indi viduals (scratches, nicks, roundness, wideness). The dissertation outlines the issues and proposes the guidelines for the next effort in discriminating marine mammal individuals.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-20T11:02:24Z
2023-02-07
2023-02-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/5127
urn:tid:203266137
url http://hdl.handle.net/10400.13/5127
identifier_str_mv urn:tid:203266137
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598851478454272