A kernel variogram estimator for clustered data
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/49153 |
Summary: | The variogram provides an important method for measuring the dependence of attribute values between spatial locations. Suppose that the nature of the sampling process leads to the presence of clustered data; it would be advisable to use a variogram estimator that aims to adjust for clustering of samples. In this setting, the use of a non-parametric weighted estimator, obtained by considering an inverse weight to a given neighbourhood density combined with the kernel method, seems to have a satisfactory behaviour in practice. This paper pursues a theoretical study of the cluster robust estimator, by proving that it is asymptotically unbiased as well as consistent and by providing criteria for selection of the bandwidth parameter and the neighbourhood radius. Numerical studies are also included to illustrate the performance of the considered estimator and the suggested approaches. |
id |
RCAP_c2c0adc643bb5509b1ba300cde1b3ce6 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/49153 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A kernel variogram estimator for clustered dataClusterIsotropyKernel methodVariogramScience & TechnologyThe variogram provides an important method for measuring the dependence of attribute values between spatial locations. Suppose that the nature of the sampling process leads to the presence of clustered data; it would be advisable to use a variogram estimator that aims to adjust for clustering of samples. In this setting, the use of a non-parametric weighted estimator, obtained by considering an inverse weight to a given neighbourhood density combined with the kernel method, seems to have a satisfactory behaviour in practice. This paper pursues a theoretical study of the cluster robust estimator, by proving that it is asymptotically unbiased as well as consistent and by providing criteria for selection of the bandwidth parameter and the neighbourhood radius. Numerical studies are also included to illustrate the performance of the considered estimator and the suggested approaches.info:eu-repo/semantics/publishedVersionBlackwell PublishingUniversidade do MinhoMenezes, RaquelGarcia-Soidán, PilarFebrero-Bande, Manuel2008-03-012008-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/49153eng0303-689810.1111/j.1467-9469.2007.00566.xinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:29:00Zoai:repositorium.sdum.uminho.pt:1822/49153Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:28:39.709377Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A kernel variogram estimator for clustered data |
title |
A kernel variogram estimator for clustered data |
spellingShingle |
A kernel variogram estimator for clustered data Menezes, Raquel Cluster Isotropy Kernel method Variogram Science & Technology |
title_short |
A kernel variogram estimator for clustered data |
title_full |
A kernel variogram estimator for clustered data |
title_fullStr |
A kernel variogram estimator for clustered data |
title_full_unstemmed |
A kernel variogram estimator for clustered data |
title_sort |
A kernel variogram estimator for clustered data |
author |
Menezes, Raquel |
author_facet |
Menezes, Raquel Garcia-Soidán, Pilar Febrero-Bande, Manuel |
author_role |
author |
author2 |
Garcia-Soidán, Pilar Febrero-Bande, Manuel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Menezes, Raquel Garcia-Soidán, Pilar Febrero-Bande, Manuel |
dc.subject.por.fl_str_mv |
Cluster Isotropy Kernel method Variogram Science & Technology |
topic |
Cluster Isotropy Kernel method Variogram Science & Technology |
description |
The variogram provides an important method for measuring the dependence of attribute values between spatial locations. Suppose that the nature of the sampling process leads to the presence of clustered data; it would be advisable to use a variogram estimator that aims to adjust for clustering of samples. In this setting, the use of a non-parametric weighted estimator, obtained by considering an inverse weight to a given neighbourhood density combined with the kernel method, seems to have a satisfactory behaviour in practice. This paper pursues a theoretical study of the cluster robust estimator, by proving that it is asymptotically unbiased as well as consistent and by providing criteria for selection of the bandwidth parameter and the neighbourhood radius. Numerical studies are also included to illustrate the performance of the considered estimator and the suggested approaches. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-01 2008-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/49153 |
url |
http://hdl.handle.net/1822/49153 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0303-6898 10.1111/j.1467-9469.2007.00566.x |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595967783305216 |