Modeling the thermal environment in an operating room

Bibliographic Details
Main Author: Teixeira, SFCF
Publication Date: 2014
Other Authors: Rodrigues, NNJO, Alberto Miguel, Oliveira, RF, Teixeira, JCF, João Santos Baptista
Format: Book
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/148145
Summary: Comfort is important in everybody's lives, as it is not only a health subject, but also a productive issue. As environmental conditions differ accordingly to the space use, there is a direct influence of this space on human comfort. The Heating Ventilation and Air Conditioning (HVAC) Systems are a crucial way to obtain the expected air quality levels in the interior of buildings and to achieve thermal comfort. These systems ensure air renewal, pressurization, temperature control, and air humidity, being of utmost importance in healthcare facilities. Providing thermal comfort conditions and good air quality, especially in operating rooms, is a difficult task, as the environmental conditions should be suitable for medical staff performance and for patient safety, as well. In the current study, a Computational Fluid Dynamics model was developed and coupled with a thermoregulatory model of the human body to describe the fluid flow, heat transfer and mass transfer between the ventilation air and a human manikin inside an operating room. The CFD simulation solves the heat, mass and momentum conservation equations in the computation domain using a finite volume discretization method, in the ANSYS - environment. The interaction between the body and the environment is determined by the thermoregulatory model, which includes temperature and the moisture diffusion through the cloth fabrics. The combination of the human body and space ventilation models allows evaluating the influence of the main thermal comfort variables on the calculation of comfort index, such as, the PMV.
id RCAP_c2ad4834112ebb9c9ba34e4383c1c06b
oai_identifier_str oai:repositorio-aberto.up.pt:10216/148145
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modeling the thermal environment in an operating roomComfort is important in everybody's lives, as it is not only a health subject, but also a productive issue. As environmental conditions differ accordingly to the space use, there is a direct influence of this space on human comfort. The Heating Ventilation and Air Conditioning (HVAC) Systems are a crucial way to obtain the expected air quality levels in the interior of buildings and to achieve thermal comfort. These systems ensure air renewal, pressurization, temperature control, and air humidity, being of utmost importance in healthcare facilities. Providing thermal comfort conditions and good air quality, especially in operating rooms, is a difficult task, as the environmental conditions should be suitable for medical staff performance and for patient safety, as well. In the current study, a Computational Fluid Dynamics model was developed and coupled with a thermoregulatory model of the human body to describe the fluid flow, heat transfer and mass transfer between the ventilation air and a human manikin inside an operating room. The CFD simulation solves the heat, mass and momentum conservation equations in the computation domain using a finite volume discretization method, in the ANSYS - environment. The interaction between the body and the environment is determined by the thermoregulatory model, which includes temperature and the moisture diffusion through the cloth fabrics. The combination of the human body and space ventilation models allows evaluating the influence of the main thermal comfort variables on the calculation of comfort index, such as, the PMV.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/148145eng10.1615/ihtc15.cnv.009593Teixeira, SFCFRodrigues, NNJOAlberto MiguelOliveira, RFTeixeira, JCFJoão Santos Baptistainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T16:52:07Zoai:repositorio-aberto.up.pt:10216/148145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:55:23.825291Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modeling the thermal environment in an operating room
title Modeling the thermal environment in an operating room
spellingShingle Modeling the thermal environment in an operating room
Teixeira, SFCF
title_short Modeling the thermal environment in an operating room
title_full Modeling the thermal environment in an operating room
title_fullStr Modeling the thermal environment in an operating room
title_full_unstemmed Modeling the thermal environment in an operating room
title_sort Modeling the thermal environment in an operating room
author Teixeira, SFCF
author_facet Teixeira, SFCF
Rodrigues, NNJO
Alberto Miguel
Oliveira, RF
Teixeira, JCF
João Santos Baptista
author_role author
author2 Rodrigues, NNJO
Alberto Miguel
Oliveira, RF
Teixeira, JCF
João Santos Baptista
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Teixeira, SFCF
Rodrigues, NNJO
Alberto Miguel
Oliveira, RF
Teixeira, JCF
João Santos Baptista
description Comfort is important in everybody's lives, as it is not only a health subject, but also a productive issue. As environmental conditions differ accordingly to the space use, there is a direct influence of this space on human comfort. The Heating Ventilation and Air Conditioning (HVAC) Systems are a crucial way to obtain the expected air quality levels in the interior of buildings and to achieve thermal comfort. These systems ensure air renewal, pressurization, temperature control, and air humidity, being of utmost importance in healthcare facilities. Providing thermal comfort conditions and good air quality, especially in operating rooms, is a difficult task, as the environmental conditions should be suitable for medical staff performance and for patient safety, as well. In the current study, a Computational Fluid Dynamics model was developed and coupled with a thermoregulatory model of the human body to describe the fluid flow, heat transfer and mass transfer between the ventilation air and a human manikin inside an operating room. The CFD simulation solves the heat, mass and momentum conservation equations in the computation domain using a finite volume discretization method, in the ANSYS - environment. The interaction between the body and the environment is determined by the thermoregulatory model, which includes temperature and the moisture diffusion through the cloth fabrics. The combination of the human body and space ventilation models allows evaluating the influence of the main thermal comfort variables on the calculation of comfort index, such as, the PMV.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/148145
url https://hdl.handle.net/10216/148145
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1615/ihtc15.cnv.009593
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599481870811136