Predictive analysis for sales: A B2B case

Bibliographic Details
Main Author: Calixto, Nelito Cravid
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/22203
Summary: Measuring salespeople’s performance is a process that occurs multiple times per year on a company. During this process, the manager and the salesperson evaluate how the salesperson performed on numerous Key Performance Indicators (KPIs). To prepare the evaluation meeting, managers have to gather data from Customer Relationship Management, Financial Systems, Excel files, among others, leading to a very time-consuming process. The result of the performance evaluation is a classification followed by actions to improve the performance where it is needed. Nowadays, through predictive analytics technologies, it is possible to make classifications based on data. In this work, the author applied a Naive Bayes model to classify salespeople into pre-defined categories provided by the business, through the use of data mining techniques over a dataset of about three years of sales made by 566 salespeople of a global freight forwarder. The classification is done in 3 classes, being: Not Performing, Good and Outstanding, the classification was achieved based on KPI’s like growth volume and percentage, sales variability along the year, opportunities created, customer baseline, target achievement among others. The author also identified the most critical factors for salesperson’s success based on the dataset as Growth amount, Target achievement, Growth percentage, and the number of months with growth above 0. The author assessed the performance of the model with a confusion matrix and other techniques like True Positives, True Negatives, and F1 score. The results showed an accuracy of 92,10% for the whole model.
id RCAP_c11a33dbc4e2a15c0823c84b74b7b17d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22203
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Predictive analysis for sales: A B2B caseData mining -- Data miningPredictive analyticsSalesPerformance measurementHuman resourcesExtracção de conhecimento em dadosAnálise preditivaVendaAvaliação do desempenho -- Performance evaluationRecursos humanosMeasuring salespeople’s performance is a process that occurs multiple times per year on a company. During this process, the manager and the salesperson evaluate how the salesperson performed on numerous Key Performance Indicators (KPIs). To prepare the evaluation meeting, managers have to gather data from Customer Relationship Management, Financial Systems, Excel files, among others, leading to a very time-consuming process. The result of the performance evaluation is a classification followed by actions to improve the performance where it is needed. Nowadays, through predictive analytics technologies, it is possible to make classifications based on data. In this work, the author applied a Naive Bayes model to classify salespeople into pre-defined categories provided by the business, through the use of data mining techniques over a dataset of about three years of sales made by 566 salespeople of a global freight forwarder. The classification is done in 3 classes, being: Not Performing, Good and Outstanding, the classification was achieved based on KPI’s like growth volume and percentage, sales variability along the year, opportunities created, customer baseline, target achievement among others. The author also identified the most critical factors for salesperson’s success based on the dataset as Growth amount, Target achievement, Growth percentage, and the number of months with growth above 0. The author assessed the performance of the model with a confusion matrix and other techniques like True Positives, True Negatives, and F1 score. The results showed an accuracy of 92,10% for the whole model.Avaliar a performance de vendedores é um processo que ocorre várias vezes por ano numa empresa. Durante este processo, o gestor e o vendedor avaliam o desempenho do vendedor em vários Indicadores de Performance. Para a reunião de avaliação, os gestores recolhem dados do sistema de Gestão de Vendas, Sistemas Financeiros, ficheiros Excel, entre outros, levando a um processo longo e exaustivo. O resultado da avaliação de desempenho é uma classificação seguida por sugestões de melhoria. Atualmente, através das tecnologias de análise preditiva, é possível fazer classificações com base em dados. Neste trabalho, o autor aplicou um modelo Naive Bayes para classificar os vendedores em categorias predefinidas fornecidas pelo negócio, usando técnicas de data mining aplicados a um conjunto de dados, composto por cerca de três anos de vendas de um transitário global. A classificação é feita em 3 classes, sendo estas: Baixo desempenho, Bom e Fora de Série, a classificação foi alcançada com base em KPI’s como a percentagem de crescimento, a variabilidade de vendas entre muitos outros. O autor também identificou os fatores críticos para o sucesso de um vendedor, de acordo com os dados, como sendo volume do crescimento da base de clientes, a capacidade de atingir os objetivos, a percentagem de crescimento e número de meses com crescimento positivo. O autor avaliou o desempenho do modelo com uma matriz de confusão e outras técnicas como True Positives, Negatives, e o score F1. Os resultados apresentaram uma precisão de 92,10 % para todo o modelo.2022-12-09T00:00:00Z2019-12-10T00:00:00Z2019-12-102019-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22203TID:202645797engCalixto, Nelito Cravidinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:44:58Zoai:repositorio.iscte-iul.pt:10071/22203Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:06:13.394187Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Predictive analysis for sales: A B2B case
title Predictive analysis for sales: A B2B case
spellingShingle Predictive analysis for sales: A B2B case
Calixto, Nelito Cravid
Data mining -- Data mining
Predictive analytics
Sales
Performance measurement
Human resources
Extracção de conhecimento em dados
Análise preditiva
Venda
Avaliação do desempenho -- Performance evaluation
Recursos humanos
title_short Predictive analysis for sales: A B2B case
title_full Predictive analysis for sales: A B2B case
title_fullStr Predictive analysis for sales: A B2B case
title_full_unstemmed Predictive analysis for sales: A B2B case
title_sort Predictive analysis for sales: A B2B case
author Calixto, Nelito Cravid
author_facet Calixto, Nelito Cravid
author_role author
dc.contributor.author.fl_str_mv Calixto, Nelito Cravid
dc.subject.por.fl_str_mv Data mining -- Data mining
Predictive analytics
Sales
Performance measurement
Human resources
Extracção de conhecimento em dados
Análise preditiva
Venda
Avaliação do desempenho -- Performance evaluation
Recursos humanos
topic Data mining -- Data mining
Predictive analytics
Sales
Performance measurement
Human resources
Extracção de conhecimento em dados
Análise preditiva
Venda
Avaliação do desempenho -- Performance evaluation
Recursos humanos
description Measuring salespeople’s performance is a process that occurs multiple times per year on a company. During this process, the manager and the salesperson evaluate how the salesperson performed on numerous Key Performance Indicators (KPIs). To prepare the evaluation meeting, managers have to gather data from Customer Relationship Management, Financial Systems, Excel files, among others, leading to a very time-consuming process. The result of the performance evaluation is a classification followed by actions to improve the performance where it is needed. Nowadays, through predictive analytics technologies, it is possible to make classifications based on data. In this work, the author applied a Naive Bayes model to classify salespeople into pre-defined categories provided by the business, through the use of data mining techniques over a dataset of about three years of sales made by 566 salespeople of a global freight forwarder. The classification is done in 3 classes, being: Not Performing, Good and Outstanding, the classification was achieved based on KPI’s like growth volume and percentage, sales variability along the year, opportunities created, customer baseline, target achievement among others. The author also identified the most critical factors for salesperson’s success based on the dataset as Growth amount, Target achievement, Growth percentage, and the number of months with growth above 0. The author assessed the performance of the model with a confusion matrix and other techniques like True Positives, True Negatives, and F1 score. The results showed an accuracy of 92,10% for the whole model.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-10T00:00:00Z
2019-12-10
2019-10
2022-12-09T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22203
TID:202645797
url http://hdl.handle.net/10071/22203
identifier_str_mv TID:202645797
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597185731592192