Atomic polymorphism
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.2/9417 |
Summary: | It has been known for six years that the restriction of Girard’s polymorphic system F to atomic universal instantiations interprets the full fragment of the intuitionistic propositional calculus. We firstly observe that Tait’s method of “convertibility” applies quite naturally to the proof of strong normalization of the restricted Girard system. We then show that each β-reduction step of the full intuitionistic propositional calculus translates into one or more βη-reduction steps in the restricted Girard system. As a consequence, we obtain a novel and perspicuous proof of the strong normalization property for the full intuitionistic propositional calculus. It is noticed that this novel proof bestows a crucial role to η-conversions. |
id |
RCAP_c00c89fdec91e93ae6093c5c03813b92 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/9417 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Atomic polymorphismPredicative polymorphismStrong normalizationNatural deductionSecond order lambda-calculusIt has been known for six years that the restriction of Girard’s polymorphic system F to atomic universal instantiations interprets the full fragment of the intuitionistic propositional calculus. We firstly observe that Tait’s method of “convertibility” applies quite naturally to the proof of strong normalization of the restricted Girard system. We then show that each β-reduction step of the full intuitionistic propositional calculus translates into one or more βη-reduction steps in the restricted Girard system. As a consequence, we obtain a novel and perspicuous proof of the strong normalization property for the full intuitionistic propositional calculus. It is noticed that this novel proof bestows a crucial role to η-conversions.The Journal of Symbolic LogicRepositório AbertoFerreira, FernandoFerreira, Gilda2020-03-02T16:51:30Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/9417eng0022-481210.2178/jsl.7801180info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:55:00Zoai:repositorioaberto.uab.pt:10400.2/9417Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:12:18.600616Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Atomic polymorphism |
title |
Atomic polymorphism |
spellingShingle |
Atomic polymorphism Ferreira, Fernando Predicative polymorphism Strong normalization Natural deduction Second order lambda-calculus |
title_short |
Atomic polymorphism |
title_full |
Atomic polymorphism |
title_fullStr |
Atomic polymorphism |
title_full_unstemmed |
Atomic polymorphism |
title_sort |
Atomic polymorphism |
author |
Ferreira, Fernando |
author_facet |
Ferreira, Fernando Ferreira, Gilda |
author_role |
author |
author2 |
Ferreira, Gilda |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Ferreira, Fernando Ferreira, Gilda |
dc.subject.por.fl_str_mv |
Predicative polymorphism Strong normalization Natural deduction Second order lambda-calculus |
topic |
Predicative polymorphism Strong normalization Natural deduction Second order lambda-calculus |
description |
It has been known for six years that the restriction of Girard’s polymorphic system F to atomic universal instantiations interprets the full fragment of the intuitionistic propositional calculus. We firstly observe that Tait’s method of “convertibility” applies quite naturally to the proof of strong normalization of the restricted Girard system. We then show that each β-reduction step of the full intuitionistic propositional calculus translates into one or more βη-reduction steps in the restricted Girard system. As a consequence, we obtain a novel and perspicuous proof of the strong normalization property for the full intuitionistic propositional calculus. It is noticed that this novel proof bestows a crucial role to η-conversions. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2020-03-02T16:51:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/9417 |
url |
http://hdl.handle.net/10400.2/9417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-4812 10.2178/jsl.7801180 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
The Journal of Symbolic Logic |
publisher.none.fl_str_mv |
The Journal of Symbolic Logic |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599142856753153 |