Secure Abstractions for Trusted Cloud Computation

Detalhes bibliográficos
Autor(a) principal: Tavares, Joana da Silva
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/61548
Resumo: Cloud computing is adopted by most organizations due to its characteristics, namely offering on-demand resources and services that can quickly be provisioned with minimal management effort and maintenance expenses for its users. However it still suffers from security incidents which have lead to many data security concerns and reluctance in further adherence. With the advent of these incidents, cryptographic technologies such as homomorphic and searchable encryption schemes were leveraged to provide solutions that mitigated data security concerns. The goal of this thesis is to provide a set of secure abstractions to serve as a tool for programmers to develop their own distributed applications. Furthermore, these abstractions can also be used to support trusted cloud computations in the context of NoSQL data stores. For this purpose we leveraged conflict-free replicated data types (CRDTs) as they provide a mechanism to ensure data consistency when replicated that has no need for synchronization, which aligns well with the distributed and replicated nature of the cloud, and the aforementioned cryptographic technologies to comply with the security requirements. The main challenge of this thesis consisted in combining the cryptographic technologies with the CRDTs in such way that it was possible to support all of the data structures functionalities over ciphertext while striving to attain the best security and performance possible. To evaluate our abstractions we conducted an experiment to compare each secure abstraction with their non secure counterpart performance wise. Additionally, we also analysed the security level provided by each of the structures in light of the cryptographic scheme used to support it. The results of our experiment shows that our abstractions provide the intended data security with an acceptable performance overhead, showing that it has potential to be used to build solutions for trusted cloud computation.
id RCAP_bf8cfa1f10e241787a1bc5ae8ead2d04
oai_identifier_str oai:run.unl.pt:10362/61548
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Secure Abstractions for Trusted Cloud ComputationTrusted cloud computingHomomorphic EncryptionSearchable EncryptionData AbstractionsCRDTsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCloud computing is adopted by most organizations due to its characteristics, namely offering on-demand resources and services that can quickly be provisioned with minimal management effort and maintenance expenses for its users. However it still suffers from security incidents which have lead to many data security concerns and reluctance in further adherence. With the advent of these incidents, cryptographic technologies such as homomorphic and searchable encryption schemes were leveraged to provide solutions that mitigated data security concerns. The goal of this thesis is to provide a set of secure abstractions to serve as a tool for programmers to develop their own distributed applications. Furthermore, these abstractions can also be used to support trusted cloud computations in the context of NoSQL data stores. For this purpose we leveraged conflict-free replicated data types (CRDTs) as they provide a mechanism to ensure data consistency when replicated that has no need for synchronization, which aligns well with the distributed and replicated nature of the cloud, and the aforementioned cryptographic technologies to comply with the security requirements. The main challenge of this thesis consisted in combining the cryptographic technologies with the CRDTs in such way that it was possible to support all of the data structures functionalities over ciphertext while striving to attain the best security and performance possible. To evaluate our abstractions we conducted an experiment to compare each secure abstraction with their non secure counterpart performance wise. Additionally, we also analysed the security level provided by each of the structures in light of the cryptographic scheme used to support it. The results of our experiment shows that our abstractions provide the intended data security with an acceptable performance overhead, showing that it has potential to be used to build solutions for trusted cloud computation.Ferreira, BernardoPreguiça, NunoRUNTavares, Joana da Silva2019-02-25T10:37:45Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/61548enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:37:23Zoai:run.unl.pt:10362/61548Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:08:22.111683Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Secure Abstractions for Trusted Cloud Computation
title Secure Abstractions for Trusted Cloud Computation
spellingShingle Secure Abstractions for Trusted Cloud Computation
Tavares, Joana da Silva
Trusted cloud computing
Homomorphic Encryption
Searchable Encryption
Data Abstractions
CRDTs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Secure Abstractions for Trusted Cloud Computation
title_full Secure Abstractions for Trusted Cloud Computation
title_fullStr Secure Abstractions for Trusted Cloud Computation
title_full_unstemmed Secure Abstractions for Trusted Cloud Computation
title_sort Secure Abstractions for Trusted Cloud Computation
author Tavares, Joana da Silva
author_facet Tavares, Joana da Silva
author_role author
dc.contributor.none.fl_str_mv Ferreira, Bernardo
Preguiça, Nuno
RUN
dc.contributor.author.fl_str_mv Tavares, Joana da Silva
dc.subject.por.fl_str_mv Trusted cloud computing
Homomorphic Encryption
Searchable Encryption
Data Abstractions
CRDTs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Trusted cloud computing
Homomorphic Encryption
Searchable Encryption
Data Abstractions
CRDTs
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Cloud computing is adopted by most organizations due to its characteristics, namely offering on-demand resources and services that can quickly be provisioned with minimal management effort and maintenance expenses for its users. However it still suffers from security incidents which have lead to many data security concerns and reluctance in further adherence. With the advent of these incidents, cryptographic technologies such as homomorphic and searchable encryption schemes were leveraged to provide solutions that mitigated data security concerns. The goal of this thesis is to provide a set of secure abstractions to serve as a tool for programmers to develop their own distributed applications. Furthermore, these abstractions can also be used to support trusted cloud computations in the context of NoSQL data stores. For this purpose we leveraged conflict-free replicated data types (CRDTs) as they provide a mechanism to ensure data consistency when replicated that has no need for synchronization, which aligns well with the distributed and replicated nature of the cloud, and the aforementioned cryptographic technologies to comply with the security requirements. The main challenge of this thesis consisted in combining the cryptographic technologies with the CRDTs in such way that it was possible to support all of the data structures functionalities over ciphertext while striving to attain the best security and performance possible. To evaluate our abstractions we conducted an experiment to compare each secure abstraction with their non secure counterpart performance wise. Additionally, we also analysed the security level provided by each of the structures in light of the cryptographic scheme used to support it. The results of our experiment shows that our abstractions provide the intended data security with an acceptable performance overhead, showing that it has potential to be used to build solutions for trusted cloud computation.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
2018
2018-12-01T00:00:00Z
2019-02-25T10:37:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/61548
url http://hdl.handle.net/10362/61548
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596464359538688