A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10773/43168 |
Resumo: | Given a social network modelled by a graph, the goal of the influence maximization problem is to find k vertices that maximize the number of active vertices through a process of diffusion. For this diffusion, the linear threshold model is considered. A new algorithm, called ClusterGreedy, is proposed to solve the influence maximization problem. The ClusterGreedy algorithm creates a partition of the original set of nodes into small subsets (the clusters), applies the SimpleGreedy algorithm to the subgraphs induced by each subset of nodes, and obtains the seed set from a combination of the seed set of each cluster by solving an integer linear program. This algorithm is further improved by exploring the submodularity property of the diffusion function. Experimental results show that the ClusterGreedy algorithm provides, on average, higher influence spread and lower running times than the SimpleGreedy algorithm on Watts–Strogatz random graphs. |
id |
RCAP_bf427835fa147b01fba9d936e246a5c2 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/43168 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clusteringclusterinfluence maximizationgreedy algorithmlinking setlinear threshold modelGiven a social network modelled by a graph, the goal of the influence maximization problem is to find k vertices that maximize the number of active vertices through a process of diffusion. For this diffusion, the linear threshold model is considered. A new algorithm, called ClusterGreedy, is proposed to solve the influence maximization problem. The ClusterGreedy algorithm creates a partition of the original set of nodes into small subsets (the clusters), applies the SimpleGreedy algorithm to the subgraphs induced by each subset of nodes, and obtains the seed set from a combination of the seed set of each cluster by solving an integer linear program. This algorithm is further improved by exploring the submodularity property of the diffusion function. Experimental results show that the ClusterGreedy algorithm provides, on average, higher influence spread and lower running times than the SimpleGreedy algorithm on Watts–Strogatz random graphs.MDPI2025-01-07T15:32:03Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/43168eng2078-248910.3390/info15020112Agra, AgostinhoSamuco, José Maria Eduardoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:48:34Zoai:ria.ua.pt:10773/43168Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:39:12.039197Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
title |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
spellingShingle |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering Agra, Agostinho cluster influence maximization greedy algorithm linking set linear threshold model |
title_short |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
title_full |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
title_fullStr |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
title_full_unstemmed |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
title_sort |
A New Algorithm Framework for the Influence Maximization Problem Using Graph Clustering |
author |
Agra, Agostinho |
author_facet |
Agra, Agostinho Samuco, José Maria Eduardo |
author_role |
author |
author2 |
Samuco, José Maria Eduardo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Agra, Agostinho Samuco, José Maria Eduardo |
dc.subject.por.fl_str_mv |
cluster influence maximization greedy algorithm linking set linear threshold model |
topic |
cluster influence maximization greedy algorithm linking set linear threshold model |
description |
Given a social network modelled by a graph, the goal of the influence maximization problem is to find k vertices that maximize the number of active vertices through a process of diffusion. For this diffusion, the linear threshold model is considered. A new algorithm, called ClusterGreedy, is proposed to solve the influence maximization problem. The ClusterGreedy algorithm creates a partition of the original set of nodes into small subsets (the clusters), applies the SimpleGreedy algorithm to the subgraphs induced by each subset of nodes, and obtains the seed set from a combination of the seed set of each cluster by solving an integer linear program. This algorithm is further improved by exploring the submodularity property of the diffusion function. Experimental results show that the ClusterGreedy algorithm provides, on average, higher influence spread and lower running times than the SimpleGreedy algorithm on Watts–Strogatz random graphs. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-01T00:00:00Z 2024 2025-01-07T15:32:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/43168 |
url |
http://hdl.handle.net/10773/43168 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2078-2489 10.3390/info15020112 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598234314932224 |