Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers
Main Author: | |
---|---|
Publication Date: | 2017 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/21532 |
Summary: | Cancer is worldwide a major cause of death, with ca. 14 million new diagnosed cases each year. Therefore, the search for more efficient early-stage diagnosis methods is crucial aiming at increasing the treatment rate and survival of patients, as well as to decrease the expenses associated to advanced treatment. Prostate specific antigen (PSA) and lactate dehydrogenase (LDH) are proteins commonly found in human fluids (urine and serum), and have been considered as cancer biomarkers and in the monitoring of cancer treatment. However, due to their low concentration and the complexity of biological matrices with a large amount of other metabolites present (proteins, DNA, RNA), the pretreatment of samples for their concentration and purification is usually applied. In this work, alternative pretreatment techniques based on aqueous biphasic systems (ABS) composed of ionic liquids (ILs) have been studied to extract, concentrate and purify proteins that can be used as cancer biomarkers, such as PSA and LDH. To this end, several preliminary works were performed to identify the most promising phase-forming components and conditions to create ABS that could be used for the extraction of proteins. These works comprise studies on the extraction of amino acids and model proteins in ABS, followed by investigations on their use with more complex matrices. Finally, ABS were investigated for the extraction and concentration of tumor biomarkers, namely PSA and LDH. In summary, the versatility of ILs allows the tailoring of the ABS extraction and concentration capacity, selectivity, and/or induced precipitation of cancer biomarkers from human fluids. The systems here developed are a viable and efficient alternative for the pretreatment of biological samples (serum and urine), thus contributing to the development of early-stage methods of cancer diagnosis. |
id |
RCAP_bd7bfe7a530f0fcdf872f8885dbc0ff7 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21532 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkersSistemas aquosos bifásicosCancroSoluções iónicasMarcadores bioquímicosCancer is worldwide a major cause of death, with ca. 14 million new diagnosed cases each year. Therefore, the search for more efficient early-stage diagnosis methods is crucial aiming at increasing the treatment rate and survival of patients, as well as to decrease the expenses associated to advanced treatment. Prostate specific antigen (PSA) and lactate dehydrogenase (LDH) are proteins commonly found in human fluids (urine and serum), and have been considered as cancer biomarkers and in the monitoring of cancer treatment. However, due to their low concentration and the complexity of biological matrices with a large amount of other metabolites present (proteins, DNA, RNA), the pretreatment of samples for their concentration and purification is usually applied. In this work, alternative pretreatment techniques based on aqueous biphasic systems (ABS) composed of ionic liquids (ILs) have been studied to extract, concentrate and purify proteins that can be used as cancer biomarkers, such as PSA and LDH. To this end, several preliminary works were performed to identify the most promising phase-forming components and conditions to create ABS that could be used for the extraction of proteins. These works comprise studies on the extraction of amino acids and model proteins in ABS, followed by investigations on their use with more complex matrices. Finally, ABS were investigated for the extraction and concentration of tumor biomarkers, namely PSA and LDH. In summary, the versatility of ILs allows the tailoring of the ABS extraction and concentration capacity, selectivity, and/or induced precipitation of cancer biomarkers from human fluids. The systems here developed are a viable and efficient alternative for the pretreatment of biological samples (serum and urine), thus contributing to the development of early-stage methods of cancer diagnosis.O cancro é mundialmente uma das principais causas de morte, com cerca de 14 milhões de novos casos diagnosticados por ano. Neste sentido, o desenvolvimento de métodos de diagnóstico mais eficientes em estágio inicial da doença é crucial para auxiliar o tratamento e aumentar a taxa de sobrevida dos pacientes, além de diminuir as despesas associadas aos tratamentos avançados. O antígeno específico da próstata (PSA) e a lactato desidrogenase (LDH) são proteínas comumente encontradas nos fluidos humanos (urina e soro) e têm sido alvo de atenção como biomarcadores do cancro e na monitorização do seu tratamento. No entanto, devido à sua baixa concentração e à complexidade das matrizes biológicas com uma grande quantidade de outros metabólitos presentes (proteínas, DNA, RNA), é geralmente aplicado um ou mais passos de pré-tratamento de amostras. Neste trabalho, foram estudadas técnicas alternativas de pré-tratamento baseadas em sistemas aquosos bifásicos (SAB) constituídos por líquidos iónicos (LIs) para extrair, concentrar e purificar proteínas que podem ser usadas como biomarcadores de cancro, como a PSA e LDH. Para este fim, foram realizados vários trabalhos preliminares para identificar os componentes e condições de formação mais promissores para criar SAB que possam ser utilizados para a extração de proteínas. Estes trabalhos contemplam a utilização de SAB para a extração de aminoácidos e proteínas modelo, assim como a utilização de SAB em matrizes mais complexas. Finalmente, os SAB foram aplicados para a extração e concentração de biomarcadores tumorais, nomeadamente PSA e LDH. Em suma, com este trabalho verificou-se que a versatilidade dos LIs permite adaptar a capacidade de extração e concentração, seletividade, e/ou precipitação induzida de biomarcadores de cancro a partir de fluidos humanos. Os sistemas aqui desenvolvidos são uma alternativa viável e eficiente para o pré-tratamento de amostras biológicas (soro e urina), contribuindo assim para o desenvolvimento de métodos de diagnóstico de cancro precoces.Universidade de Aveiro2023-03-25T00:00:00Z2017-12-20T00:00:00Z2017-12-20doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/21532TID:101581416engPereira, Matheus Mendonçainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:11:22Zoai:ria.ua.pt:10773/21532Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:00:14.742768Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
title |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
spellingShingle |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers Pereira, Matheus Mendonça Sistemas aquosos bifásicos Cancro Soluções iónicas Marcadores bioquímicos |
title_short |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
title_full |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
title_fullStr |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
title_full_unstemmed |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
title_sort |
Ionic-liquid-based aqueous biphasic systems as concentration and purification platforms of cancer biomarkers |
author |
Pereira, Matheus Mendonça |
author_facet |
Pereira, Matheus Mendonça |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, Matheus Mendonça |
dc.subject.por.fl_str_mv |
Sistemas aquosos bifásicos Cancro Soluções iónicas Marcadores bioquímicos |
topic |
Sistemas aquosos bifásicos Cancro Soluções iónicas Marcadores bioquímicos |
description |
Cancer is worldwide a major cause of death, with ca. 14 million new diagnosed cases each year. Therefore, the search for more efficient early-stage diagnosis methods is crucial aiming at increasing the treatment rate and survival of patients, as well as to decrease the expenses associated to advanced treatment. Prostate specific antigen (PSA) and lactate dehydrogenase (LDH) are proteins commonly found in human fluids (urine and serum), and have been considered as cancer biomarkers and in the monitoring of cancer treatment. However, due to their low concentration and the complexity of biological matrices with a large amount of other metabolites present (proteins, DNA, RNA), the pretreatment of samples for their concentration and purification is usually applied. In this work, alternative pretreatment techniques based on aqueous biphasic systems (ABS) composed of ionic liquids (ILs) have been studied to extract, concentrate and purify proteins that can be used as cancer biomarkers, such as PSA and LDH. To this end, several preliminary works were performed to identify the most promising phase-forming components and conditions to create ABS that could be used for the extraction of proteins. These works comprise studies on the extraction of amino acids and model proteins in ABS, followed by investigations on their use with more complex matrices. Finally, ABS were investigated for the extraction and concentration of tumor biomarkers, namely PSA and LDH. In summary, the versatility of ILs allows the tailoring of the ABS extraction and concentration capacity, selectivity, and/or induced precipitation of cancer biomarkers from human fluids. The systems here developed are a viable and efficient alternative for the pretreatment of biological samples (serum and urine), thus contributing to the development of early-stage methods of cancer diagnosis. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-20T00:00:00Z 2017-12-20 2023-03-25T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21532 TID:101581416 |
url |
http://hdl.handle.net/10773/21532 |
identifier_str_mv |
TID:101581416 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594213416042496 |