Application-Driven Wireless Sensor Networks

Detalhes bibliográficos
Autor(a) principal: Marques, Bruno
Data de Publicação: 2016
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.19/4476
Resumo: The growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Recently there has been an increasing trend towards enabling the Internet-of-Things (IoT). Thousands of tiny devices interacting with their environments are being inter-networked and made accessible through the Internet. For that purpose, several communications protocols have been defined making use of the IEEE 802.15.4 Physical and MAC layers. The 6LoWPAN Network Layer adaptation protocol is an example which bridges the gap between low power devices and the IP world. Since its release, the design of routing protocols became increasingly important and the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) emerged as the IETF proposed standard protocol for IPv6-based multi-hop Wireless Sensor Networks (WSN). This thesis considers that the sensor nodes form a large IPv6 network making use of above technologies and protocols, and that the sensor nodes are enabled to run one or more applications. It is also assumed that the applications and the sensor nodes to which they are associated, are not always active, alternating between active and inactive states. The thesis aims to design a new energy efficient communications solution for WSN by exploring the hypothesis that the network is aware of the traffic generated by the applications running in the sensor nodes. Therefore, the thesis provides two major contributions: 1) a cross-layer mechanism using application layer and network layer information to constrainRPL-defined routing trees (RPL-BMARQ); 2) an Application-Driven WSN node synchronization mechanism for RPL-BMARQ. RPL-BMARQ is designed as an extension to the RPLrouting protocol using information shared by the application and routing layers to construct Directed Acyclic Graphs (DAGs), allowing the nodes to select parents with respect to the applications they run. By jointly considering the neighbors of each node, the applications each node runs, and the forwarding capabilities of a node, we provide a communications solution which enables the data of every application and sensor node to be transferred, while keeping the overall energy consumed low by reducing the time the nodes are active and reducing the total number of multicast packets exchanged. Therefore, RPL-BMARQ helps reducing the network energy consumption since it restricts radio communication activities while maintaining throughput fairness and packet reception ratio high. The mechanism was evaluated using four scenarios with different network topologies and compared against "standard RPL". The results obtained show that the mechanism enables lower energy consumption since the nodes are more often put a sleep, reducing the total number of packets exchanged, while maintaining fairness and query success rates high. The Application-Driven WSN node synchronization mechanism for RPL-BMARQ was designed to maintain the sensor nodes synchronized according to the duty cycle of the applications they run. The mechanism jointly uses cross-layer information and the Exponentially Weighted Moving Average (EWMA) technique for calculating in run-time average network delays which are used to control the time the sensor nodes would sleep in the next cycle in order to wake up just before the next activity period starts. This mechanism enables all the sensor nodes to go asleep and to wake up in synchronism. The mechanism was theoretically evaluated and simulated, and the results obtained show that the synchronization mechanism works as previewed. The results also showed that, when designing WSN applications with this mechanism, the nodes not involved in communications are kept sleeping as much as possible, waking up when necessary and in synchronism. In order to confirm the validity of the mechanisms designed, we also tested them in real environments where the results were confirmed.
id RCAP_bd4e7f5ae6c02193a31f2fca06e1a45c
oai_identifier_str oai:repositorio.ipv.pt:10400.19/4476
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Application-Driven Wireless Sensor NetworksWSNApplication-Driven WSNRPLNode SynchronizationThe growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Recently there has been an increasing trend towards enabling the Internet-of-Things (IoT). Thousands of tiny devices interacting with their environments are being inter-networked and made accessible through the Internet. For that purpose, several communications protocols have been defined making use of the IEEE 802.15.4 Physical and MAC layers. The 6LoWPAN Network Layer adaptation protocol is an example which bridges the gap between low power devices and the IP world. Since its release, the design of routing protocols became increasingly important and the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) emerged as the IETF proposed standard protocol for IPv6-based multi-hop Wireless Sensor Networks (WSN). This thesis considers that the sensor nodes form a large IPv6 network making use of above technologies and protocols, and that the sensor nodes are enabled to run one or more applications. It is also assumed that the applications and the sensor nodes to which they are associated, are not always active, alternating between active and inactive states. The thesis aims to design a new energy efficient communications solution for WSN by exploring the hypothesis that the network is aware of the traffic generated by the applications running in the sensor nodes. Therefore, the thesis provides two major contributions: 1) a cross-layer mechanism using application layer and network layer information to constrainRPL-defined routing trees (RPL-BMARQ); 2) an Application-Driven WSN node synchronization mechanism for RPL-BMARQ. RPL-BMARQ is designed as an extension to the RPLrouting protocol using information shared by the application and routing layers to construct Directed Acyclic Graphs (DAGs), allowing the nodes to select parents with respect to the applications they run. By jointly considering the neighbors of each node, the applications each node runs, and the forwarding capabilities of a node, we provide a communications solution which enables the data of every application and sensor node to be transferred, while keeping the overall energy consumed low by reducing the time the nodes are active and reducing the total number of multicast packets exchanged. Therefore, RPL-BMARQ helps reducing the network energy consumption since it restricts radio communication activities while maintaining throughput fairness and packet reception ratio high. The mechanism was evaluated using four scenarios with different network topologies and compared against "standard RPL". The results obtained show that the mechanism enables lower energy consumption since the nodes are more often put a sleep, reducing the total number of packets exchanged, while maintaining fairness and query success rates high. The Application-Driven WSN node synchronization mechanism for RPL-BMARQ was designed to maintain the sensor nodes synchronized according to the duty cycle of the applications they run. The mechanism jointly uses cross-layer information and the Exponentially Weighted Moving Average (EWMA) technique for calculating in run-time average network delays which are used to control the time the sensor nodes would sleep in the next cycle in order to wake up just before the next activity period starts. This mechanism enables all the sensor nodes to go asleep and to wake up in synchronism. The mechanism was theoretically evaluated and simulated, and the results obtained show that the synchronization mechanism works as previewed. The results also showed that, when designing WSN applications with this mechanism, the nodes not involved in communications are kept sleeping as much as possible, waking up when necessary and in synchronism. In order to confirm the validity of the mechanisms designed, we also tested them in real environments where the results were confirmed.Ricardo, ManuelInstituto Politécnico de ViseuMarques, Bruno2017-03-13T15:13:41Z2017-01-102016-06-082017-01-10T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.19/4476enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-06T13:52:41Zoai:repositorio.ipv.pt:10400.19/4476Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:07:42.365902Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Application-Driven Wireless Sensor Networks
title Application-Driven Wireless Sensor Networks
spellingShingle Application-Driven Wireless Sensor Networks
Marques, Bruno
WSN
Application-Driven WSN
RPL
Node Synchronization
title_short Application-Driven Wireless Sensor Networks
title_full Application-Driven Wireless Sensor Networks
title_fullStr Application-Driven Wireless Sensor Networks
title_full_unstemmed Application-Driven Wireless Sensor Networks
title_sort Application-Driven Wireless Sensor Networks
author Marques, Bruno
author_facet Marques, Bruno
author_role author
dc.contributor.none.fl_str_mv Ricardo, Manuel
Instituto Politécnico de Viseu
dc.contributor.author.fl_str_mv Marques, Bruno
dc.subject.por.fl_str_mv WSN
Application-Driven WSN
RPL
Node Synchronization
topic WSN
Application-Driven WSN
RPL
Node Synchronization
description The growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Recently there has been an increasing trend towards enabling the Internet-of-Things (IoT). Thousands of tiny devices interacting with their environments are being inter-networked and made accessible through the Internet. For that purpose, several communications protocols have been defined making use of the IEEE 802.15.4 Physical and MAC layers. The 6LoWPAN Network Layer adaptation protocol is an example which bridges the gap between low power devices and the IP world. Since its release, the design of routing protocols became increasingly important and the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) emerged as the IETF proposed standard protocol for IPv6-based multi-hop Wireless Sensor Networks (WSN). This thesis considers that the sensor nodes form a large IPv6 network making use of above technologies and protocols, and that the sensor nodes are enabled to run one or more applications. It is also assumed that the applications and the sensor nodes to which they are associated, are not always active, alternating between active and inactive states. The thesis aims to design a new energy efficient communications solution for WSN by exploring the hypothesis that the network is aware of the traffic generated by the applications running in the sensor nodes. Therefore, the thesis provides two major contributions: 1) a cross-layer mechanism using application layer and network layer information to constrainRPL-defined routing trees (RPL-BMARQ); 2) an Application-Driven WSN node synchronization mechanism for RPL-BMARQ. RPL-BMARQ is designed as an extension to the RPLrouting protocol using information shared by the application and routing layers to construct Directed Acyclic Graphs (DAGs), allowing the nodes to select parents with respect to the applications they run. By jointly considering the neighbors of each node, the applications each node runs, and the forwarding capabilities of a node, we provide a communications solution which enables the data of every application and sensor node to be transferred, while keeping the overall energy consumed low by reducing the time the nodes are active and reducing the total number of multicast packets exchanged. Therefore, RPL-BMARQ helps reducing the network energy consumption since it restricts radio communication activities while maintaining throughput fairness and packet reception ratio high. The mechanism was evaluated using four scenarios with different network topologies and compared against "standard RPL". The results obtained show that the mechanism enables lower energy consumption since the nodes are more often put a sleep, reducing the total number of packets exchanged, while maintaining fairness and query success rates high. The Application-Driven WSN node synchronization mechanism for RPL-BMARQ was designed to maintain the sensor nodes synchronized according to the duty cycle of the applications they run. The mechanism jointly uses cross-layer information and the Exponentially Weighted Moving Average (EWMA) technique for calculating in run-time average network delays which are used to control the time the sensor nodes would sleep in the next cycle in order to wake up just before the next activity period starts. This mechanism enables all the sensor nodes to go asleep and to wake up in synchronism. The mechanism was theoretically evaluated and simulated, and the results obtained show that the synchronization mechanism works as previewed. The results also showed that, when designing WSN applications with this mechanism, the nodes not involved in communications are kept sleeping as much as possible, waking up when necessary and in synchronism. In order to confirm the validity of the mechanisms designed, we also tested them in real environments where the results were confirmed.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-08
2017-03-13T15:13:41Z
2017-01-10
2017-01-10T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.19/4476
url http://hdl.handle.net/10400.19/4476
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600409856376832