An artificial neural network approach for short-term wind power forecasting in Portugal
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.21/1272 |
Summary: | This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study. |
id |
RCAP_bc826f8705e70a18d39389f0e747a9d3 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/1272 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
An artificial neural network approach for short-term wind power forecasting in PortugalArtificial neural networksForecastingWind powerModelsPredictionSpeedThis paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.C R L Publishing LTDRCIPLCatalão, João Paulo da SilvaPousinho, Hugo Miguel InácioMendes, Victor2012-03-13T13:05:19Z2009-032009-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.21/1272eng1472-8915info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T08:50:51Zoai:repositorio.ipl.pt:10400.21/1272Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:57:49.541307Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
An artificial neural network approach for short-term wind power forecasting in Portugal |
title |
An artificial neural network approach for short-term wind power forecasting in Portugal |
spellingShingle |
An artificial neural network approach for short-term wind power forecasting in Portugal Catalão, João Paulo da Silva Artificial neural networks Forecasting Wind power Models Prediction Speed |
title_short |
An artificial neural network approach for short-term wind power forecasting in Portugal |
title_full |
An artificial neural network approach for short-term wind power forecasting in Portugal |
title_fullStr |
An artificial neural network approach for short-term wind power forecasting in Portugal |
title_full_unstemmed |
An artificial neural network approach for short-term wind power forecasting in Portugal |
title_sort |
An artificial neural network approach for short-term wind power forecasting in Portugal |
author |
Catalão, João Paulo da Silva |
author_facet |
Catalão, João Paulo da Silva Pousinho, Hugo Miguel Inácio Mendes, Victor |
author_role |
author |
author2 |
Pousinho, Hugo Miguel Inácio Mendes, Victor |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Catalão, João Paulo da Silva Pousinho, Hugo Miguel Inácio Mendes, Victor |
dc.subject.por.fl_str_mv |
Artificial neural networks Forecasting Wind power Models Prediction Speed |
topic |
Artificial neural networks Forecasting Wind power Models Prediction Speed |
description |
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03 2009-03-01T00:00:00Z 2012-03-13T13:05:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/1272 |
url |
http://hdl.handle.net/10400.21/1272 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1472-8915 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
C R L Publishing LTD |
publisher.none.fl_str_mv |
C R L Publishing LTD |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598418783567872 |