High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/115438 https://doi.org/10.1016/j.cma.2011.09.016 |
Summary: | In this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case. |
id |
RCAP_bb29e8a819360a07d81e612bcadf95d2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/115438 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domainSpectral element methodIncompressible Navier–Stokes equationsArbitrary Lagrangian–Eulerian frameworkAlgebraic factorization methodsIn this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case.POCI/2010/FEDER2F19-91D3-6B32 | Gonçalo Nuno Travassos Borges Alves da Penainfo:eu-repo/semantics/publishedVersionElsevier2012-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/115438https://hdl.handle.net/10316/115438https://doi.org/10.1016/j.cma.2011.09.016eng0045-7825cv-prod-323739https://www.sciencedirect.com/science/article/pii/S0045782511003124?via%3DihubPena, GonçaloPrud’homme, C.Quarteroni, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-16T14:55:17Zoai:estudogeral.uc.pt:10316/115438Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:08:57.736069Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
title |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
spellingShingle |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain Pena, Gonçalo Spectral element method Incompressible Navier–Stokes equations Arbitrary Lagrangian–Eulerian framework Algebraic factorization methods |
title_short |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
title_full |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
title_fullStr |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
title_full_unstemmed |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
title_sort |
High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain |
author |
Pena, Gonçalo |
author_facet |
Pena, Gonçalo Prud’homme, C. Quarteroni, A. |
author_role |
author |
author2 |
Prud’homme, C. Quarteroni, A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pena, Gonçalo Prud’homme, C. Quarteroni, A. |
dc.subject.por.fl_str_mv |
Spectral element method Incompressible Navier–Stokes equations Arbitrary Lagrangian–Eulerian framework Algebraic factorization methods |
topic |
Spectral element method Incompressible Navier–Stokes equations Arbitrary Lagrangian–Eulerian framework Algebraic factorization methods |
description |
In this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/115438 https://hdl.handle.net/10316/115438 https://doi.org/10.1016/j.cma.2011.09.016 |
url |
https://hdl.handle.net/10316/115438 https://doi.org/10.1016/j.cma.2011.09.016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0045-7825 cv-prod-323739 https://www.sciencedirect.com/science/article/pii/S0045782511003124?via%3Dihub |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602591737511936 |