Export Ready — 

High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain

Bibliographic Details
Main Author: Pena, Gonçalo
Publication Date: 2012
Other Authors: Prud’homme, C., Quarteroni, A.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/115438
https://doi.org/10.1016/j.cma.2011.09.016
Summary: In this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case.
id RCAP_bb29e8a819360a07d81e612bcadf95d2
oai_identifier_str oai:estudogeral.uc.pt:10316/115438
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domainSpectral element methodIncompressible Navier–Stokes equationsArbitrary Lagrangian–Eulerian frameworkAlgebraic factorization methodsIn this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case.POCI/2010/FEDER2F19-91D3-6B32 | Gonçalo Nuno Travassos Borges Alves da Penainfo:eu-repo/semantics/publishedVersionElsevier2012-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/115438https://hdl.handle.net/10316/115438https://doi.org/10.1016/j.cma.2011.09.016eng0045-7825cv-prod-323739https://www.sciencedirect.com/science/article/pii/S0045782511003124?via%3DihubPena, GonçaloPrud’homme, C.Quarteroni, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-16T14:55:17Zoai:estudogeral.uc.pt:10316/115438Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:08:57.736069Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
title High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
spellingShingle High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
Pena, Gonçalo
Spectral element method
Incompressible Navier–Stokes equations
Arbitrary Lagrangian–Eulerian framework
Algebraic factorization methods
title_short High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
title_full High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
title_fullStr High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
title_full_unstemmed High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
title_sort High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain
author Pena, Gonçalo
author_facet Pena, Gonçalo
Prud’homme, C.
Quarteroni, A.
author_role author
author2 Prud’homme, C.
Quarteroni, A.
author2_role author
author
dc.contributor.author.fl_str_mv Pena, Gonçalo
Prud’homme, C.
Quarteroni, A.
dc.subject.por.fl_str_mv Spectral element method
Incompressible Navier–Stokes equations
Arbitrary Lagrangian–Eulerian framework
Algebraic factorization methods
topic Spectral element method
Incompressible Navier–Stokes equations
Arbitrary Lagrangian–Eulerian framework
Algebraic factorization methods
description In this paper we address the numerical approximation of the incompressible Navier–Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/115438
https://hdl.handle.net/10316/115438
https://doi.org/10.1016/j.cma.2011.09.016
url https://hdl.handle.net/10316/115438
https://doi.org/10.1016/j.cma.2011.09.016
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0045-7825
cv-prod-323739
https://www.sciencedirect.com/science/article/pii/S0045782511003124?via%3Dihub
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602591737511936