Models and heuristics for forest management with environmental restrictions

Bibliographic Details
Main Author: Neto, Teresa
Publication Date: 2018
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/38261
Summary: Tese de doutoramento, Estatística e Investigação Operacional (Otimização), Universidade de Lisboa, Faculdade de Ciências, 2018
id RCAP_bb0f36990a92edccf367d3fb69ace384
oai_identifier_str oai:repositorio.ulisboa.pt:10451/38261
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Models and heuristics for forest management with environmental restrictionsTeses de doutoramento - 2018Domínio/Área Científica::Ciências Naturais::MatemáticasTese de doutoramento, Estatística e Investigação Operacional (Otimização), Universidade de Lisboa, Faculdade de Ciências, 2018The main focus of this thesis was to develop mathematical models and methods in integer programming for solving harvest scheduling problems with environmental restrictions. Constraints on maximum clearcut area, minimum total habitat area, minimum total core area and inter-habitat connectivity were addressed for this purpose. The research was structured in a collection of three papers, each one describing the study of a different forest harvest scheduling problem with respect to the environmental constraints. Problems of papers 1 and 2 aim at maximizing the net present value. A bi objective problem is considered in paper 3. The objectives are the maximization of the net present value and the maximization of the inter-habitat connectivity. The tree search methods branch-and-bound and multiobjective Monte Carlo tree search were designed specifically to solve the problems. The methods could be used as heuristics, as a time limit of 2 hours was imposed. All harvest scheduling problems were based on the socalled cluster formulation. The proposed models and methods were tested with sixteen real and hypothetical instances ranging from small to large. The results obtained for branch-and-bound and Monte Carlo tree search show that these methods were able to find solutions for all instances. The results suggest that it is possible to address the environmental restrictions with small reductions of the net present value. With respect to the forestry fragmentation caused by harvestings, the results suggest that, although clearcut size constraints tend to disperse clearcuts across the forest, compromising the development of large habitats, close to each other, the proposed models, with the other environmental constraints, attempt to mitigate this effect.Constantino, Miguel Fragoso, 1960-Pedroso, João PedroMartins, IsabelRepositório da Universidade de LisboaNeto, Teresa2019-05-17T11:12:26Z201820182018-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/38261TID:101290675enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:06:46Zoai:repositorio.ulisboa.pt:10451/38261Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:02:50.233244Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Models and heuristics for forest management with environmental restrictions
title Models and heuristics for forest management with environmental restrictions
spellingShingle Models and heuristics for forest management with environmental restrictions
Neto, Teresa
Teses de doutoramento - 2018
Domínio/Área Científica::Ciências Naturais::Matemáticas
title_short Models and heuristics for forest management with environmental restrictions
title_full Models and heuristics for forest management with environmental restrictions
title_fullStr Models and heuristics for forest management with environmental restrictions
title_full_unstemmed Models and heuristics for forest management with environmental restrictions
title_sort Models and heuristics for forest management with environmental restrictions
author Neto, Teresa
author_facet Neto, Teresa
author_role author
dc.contributor.none.fl_str_mv Constantino, Miguel Fragoso, 1960-
Pedroso, João Pedro
Martins, Isabel
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Neto, Teresa
dc.subject.por.fl_str_mv Teses de doutoramento - 2018
Domínio/Área Científica::Ciências Naturais::Matemáticas
topic Teses de doutoramento - 2018
Domínio/Área Científica::Ciências Naturais::Matemáticas
description Tese de doutoramento, Estatística e Investigação Operacional (Otimização), Universidade de Lisboa, Faculdade de Ciências, 2018
publishDate 2018
dc.date.none.fl_str_mv 2018
2018
2018-01-01T00:00:00Z
2019-05-17T11:12:26Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/38261
TID:101290675
url http://hdl.handle.net/10451/38261
identifier_str_mv TID:101290675
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601576628912128