High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers

Bibliographic Details
Main Author: Moura, Duarte Alexandre Campos Serra
Publication Date: 2016
Other Authors: Caridade, S. G., Sousa, M. P., Cunha, E., Rocha, Helena, Mano, J. F., Paiva, M. C., Alves, N. M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/43832
Summary: In this work, novel free-standing (FS) films based on chitosan, alginate and graphene oxide (GO) were developed through layer-by-layer assembly. First, GO was synthesized from graphite and multi-walled carbon nanotubes using a modified Hummer's method, yielding oxidized graphene flakes (o-GFs) and oxidized graphene nanoribbons (o-GNRs), respectively, which were then characterized. Then FS films were produced and their morphological, thermal and mechanical properties, as well as the o-GF and o-GNR dispersion along the films were assessed. Their degradation and swelling profiles as well as their biological behavior were evaluated. Graphite and nanotubes were successfully oxidized and exfoliated forming stable suspensions that could be combined with chitosan (CHI) and alginate (ALG) solutions by layer-by-layer processing. The addition of o-GFs and o-GNRs resulted in rougher, hydrophilic FS films with significantly improved mechanical properties relative to CHI/ALG films. The presence of o-GFs or o-GNRs did not affect the thermal stability and the addition of o-GFs resulted in films with enhanced cytocompatibility. The results demonstrate the high potential of the GO reinforced films for biomedical applications, in particular o-GF films, for wound healing, and cardiac and bone engineering applications.
id RCAP_ba253e0b0f6d1f05d8a42ef92c3bd432
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/43832
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymersGrapheneHigh performance free-standing filmsLayer-by-layer assemblyNatural polymersScience & TechnologyIn this work, novel free-standing (FS) films based on chitosan, alginate and graphene oxide (GO) were developed through layer-by-layer assembly. First, GO was synthesized from graphite and multi-walled carbon nanotubes using a modified Hummer's method, yielding oxidized graphene flakes (o-GFs) and oxidized graphene nanoribbons (o-GNRs), respectively, which were then characterized. Then FS films were produced and their morphological, thermal and mechanical properties, as well as the o-GF and o-GNR dispersion along the films were assessed. Their degradation and swelling profiles as well as their biological behavior were evaluated. Graphite and nanotubes were successfully oxidized and exfoliated forming stable suspensions that could be combined with chitosan (CHI) and alginate (ALG) solutions by layer-by-layer processing. The addition of o-GFs and o-GNRs resulted in rougher, hydrophilic FS films with significantly improved mechanical properties relative to CHI/ALG films. The presence of o-GFs or o-GNRs did not affect the thermal stability and the addition of o-GFs resulted in films with enhanced cytocompatibility. The results demonstrate the high potential of the GO reinforced films for biomedical applications, in particular o-GF films, for wound healing, and cardiac and bone engineering applications.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) and the European program FEDER/ COMPETE for the financial support through project BioSeaGlue: EXPL/CTM-BIO/0646/2013 (FCOMP-01-0124-FEDER-041105) and for project PEst-C/CTM/LA0025/2013 (Strategic Project – LA 25 – 2013-2014). This work was also financially supported by FCT through the scholarships SFRH/BPD/96797/2013 granted to Sofia G. Caridade, SFRH/BD/97606/2013 granted to Maria Sousa, and SFRH/BD/87214/2012 granted to Eunice Cunha.Royal Society of ChemistryUniversidade do MinhoMoura, Duarte Alexandre Campos SerraCaridade, S. G.Sousa, M. P.Cunha, E.Rocha, HelenaMano, J. F.Paiva, M. C.Alves, N. M.2016-112016-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/43832engMoura D., Caridade S. G., Sousa M. P., Cunha E., Mano J. F., Paiva M. C., Alves N. M. High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers, Journal Of Materials Chemistry B, Vol. 4, Issue 47, pp. 7718-7730, doi:10.1039/C6TB02344D, 20162050-750X10.1039/C6TB02344Dhttp://dx.doi.org/10.1039/C6TB02344Dinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:47:31Zoai:repositorium.sdum.uminho.pt:1822/43832Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:30:18.230202Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
title High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
spellingShingle High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
Moura, Duarte Alexandre Campos Serra
Graphene
High performance free-standing films
Layer-by-layer assembly
Natural polymers
Science & Technology
title_short High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
title_full High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
title_fullStr High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
title_full_unstemmed High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
title_sort High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers
author Moura, Duarte Alexandre Campos Serra
author_facet Moura, Duarte Alexandre Campos Serra
Caridade, S. G.
Sousa, M. P.
Cunha, E.
Rocha, Helena
Mano, J. F.
Paiva, M. C.
Alves, N. M.
author_role author
author2 Caridade, S. G.
Sousa, M. P.
Cunha, E.
Rocha, Helena
Mano, J. F.
Paiva, M. C.
Alves, N. M.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Moura, Duarte Alexandre Campos Serra
Caridade, S. G.
Sousa, M. P.
Cunha, E.
Rocha, Helena
Mano, J. F.
Paiva, M. C.
Alves, N. M.
dc.subject.por.fl_str_mv Graphene
High performance free-standing films
Layer-by-layer assembly
Natural polymers
Science & Technology
topic Graphene
High performance free-standing films
Layer-by-layer assembly
Natural polymers
Science & Technology
description In this work, novel free-standing (FS) films based on chitosan, alginate and graphene oxide (GO) were developed through layer-by-layer assembly. First, GO was synthesized from graphite and multi-walled carbon nanotubes using a modified Hummer's method, yielding oxidized graphene flakes (o-GFs) and oxidized graphene nanoribbons (o-GNRs), respectively, which were then characterized. Then FS films were produced and their morphological, thermal and mechanical properties, as well as the o-GF and o-GNR dispersion along the films were assessed. Their degradation and swelling profiles as well as their biological behavior were evaluated. Graphite and nanotubes were successfully oxidized and exfoliated forming stable suspensions that could be combined with chitosan (CHI) and alginate (ALG) solutions by layer-by-layer processing. The addition of o-GFs and o-GNRs resulted in rougher, hydrophilic FS films with significantly improved mechanical properties relative to CHI/ALG films. The presence of o-GFs or o-GNRs did not affect the thermal stability and the addition of o-GFs resulted in films with enhanced cytocompatibility. The results demonstrate the high potential of the GO reinforced films for biomedical applications, in particular o-GF films, for wound healing, and cardiac and bone engineering applications.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
2016-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/43832
url http://hdl.handle.net/1822/43832
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Moura D., Caridade S. G., Sousa M. P., Cunha E., Mano J. F., Paiva M. C., Alves N. M. High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers, Journal Of Materials Chemistry B, Vol. 4, Issue 47, pp. 7718-7730, doi:10.1039/C6TB02344D, 2016
2050-750X
10.1039/C6TB02344D
http://dx.doi.org/10.1039/C6TB02344D
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595357528850432