Revolutionizing Kidney Transplantation
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , |
Format: | Other |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/166077 |
Summary: | Publisher Copyright: © 2024 by the authors. |
id |
RCAP_b9efdaa74aca62bb1b5bd5e9dae18ff8 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/166077 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Revolutionizing Kidney TransplantationConnecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allograftsartificial intelligencekidney transplantationmachine learningprecision medicineComputer Science (miscellaneous)Medicine (miscellaneous)Health InformaticsHealth Professions (miscellaneous)Publisher Copyright: © 2024 by the authors.This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the transplantation process, from donor selection to postoperative patient care. Our methodology involved a comprehensive review of current research, focusing on the application of AI and ML in various stages of KT. This included an analysis of donor–recipient matching, predictive modeling, and the improvement in postoperative care. The results indicated that AI and ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive modeling, based on extensive data analysis, has been particularly effective in identifying suitable organ matches and anticipating postoperative complications. In conclusion, this review discusses the transformative impact of AI and ML in KT, offering more precise, personalized, and effective healthcare solutions. Their integration into this field addresses critical issues like organ shortages and post-transplant complications. However, the successful application of these technologies requires careful consideration of their ethical, privacy, and training aspects in healthcare settings.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)iNOVA4Health - pólo NMSComprehensive Health Research Centre (CHRC) - pólo NMSRUNRamalhete, LuísAlmeida, PaulaFerreira, RaquelAbade, OlgaTeixeira, CristianaAraújo, Rúben2024-04-11T00:36:01Z2024-032024-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other17application/pdfhttp://hdl.handle.net/10362/166077eng2673-7426PURE: 87106648https://doi.org/10.3390/biomedinformatics4010037info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:20:23Zoai:run.unl.pt:10362/166077Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:51:04.589471Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Revolutionizing Kidney Transplantation Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts |
title |
Revolutionizing Kidney Transplantation |
spellingShingle |
Revolutionizing Kidney Transplantation Ramalhete, Luís artificial intelligence kidney transplantation machine learning precision medicine Computer Science (miscellaneous) Medicine (miscellaneous) Health Informatics Health Professions (miscellaneous) |
title_short |
Revolutionizing Kidney Transplantation |
title_full |
Revolutionizing Kidney Transplantation |
title_fullStr |
Revolutionizing Kidney Transplantation |
title_full_unstemmed |
Revolutionizing Kidney Transplantation |
title_sort |
Revolutionizing Kidney Transplantation |
author |
Ramalhete, Luís |
author_facet |
Ramalhete, Luís Almeida, Paula Ferreira, Raquel Abade, Olga Teixeira, Cristiana Araújo, Rúben |
author_role |
author |
author2 |
Almeida, Paula Ferreira, Raquel Abade, Olga Teixeira, Cristiana Araújo, Rúben |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) iNOVA4Health - pólo NMS Comprehensive Health Research Centre (CHRC) - pólo NMS RUN |
dc.contributor.author.fl_str_mv |
Ramalhete, Luís Almeida, Paula Ferreira, Raquel Abade, Olga Teixeira, Cristiana Araújo, Rúben |
dc.subject.por.fl_str_mv |
artificial intelligence kidney transplantation machine learning precision medicine Computer Science (miscellaneous) Medicine (miscellaneous) Health Informatics Health Professions (miscellaneous) |
topic |
artificial intelligence kidney transplantation machine learning precision medicine Computer Science (miscellaneous) Medicine (miscellaneous) Health Informatics Health Professions (miscellaneous) |
description |
Publisher Copyright: © 2024 by the authors. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-11T00:36:01Z 2024-03 2024-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/166077 |
url |
http://hdl.handle.net/10362/166077 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2673-7426 PURE: 87106648 https://doi.org/10.3390/biomedinformatics4010037 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597010788220928 |