A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.6/12120 |
Summary: | Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications. |
id |
RCAP_b93fede12d7ed66c9f48243f8e1e6cb1 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/12120 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and RepellingBird Damage to Fruit CropsUnmanned Aerial VehiclesPath PlanningMeta-HeuristicPath Planning Optimization AlgorithmBird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications.uBibliorumMesquita, RicardoGaspar, Pedro Dinis2022-03-28T11:02:44Z2021-12-282021-12-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/12120eng10.3390/pr10010062info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T14:41:57Zoai:ubibliorum.ubi.pt:10400.6/12120Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:20:13.225583Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
title |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
spellingShingle |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling Mesquita, Ricardo Bird Damage to Fruit Crops Unmanned Aerial Vehicles Path Planning Meta-Heuristic Path Planning Optimization Algorithm |
title_short |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
title_full |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
title_fullStr |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
title_full_unstemmed |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
title_sort |
A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling |
author |
Mesquita, Ricardo |
author_facet |
Mesquita, Ricardo Gaspar, Pedro Dinis |
author_role |
author |
author2 |
Gaspar, Pedro Dinis |
author2_role |
author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Mesquita, Ricardo Gaspar, Pedro Dinis |
dc.subject.por.fl_str_mv |
Bird Damage to Fruit Crops Unmanned Aerial Vehicles Path Planning Meta-Heuristic Path Planning Optimization Algorithm |
topic |
Bird Damage to Fruit Crops Unmanned Aerial Vehicles Path Planning Meta-Heuristic Path Planning Optimization Algorithm |
description |
Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-28 2021-12-28T00:00:00Z 2022-03-28T11:02:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/12120 |
url |
http://hdl.handle.net/10400.6/12120 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/pr10010062 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600932664836096 |