Severe plastic deformation of Al–Zn alloys

Bibliographic Details
Main Author: Borodachenkova, Marina
Publication Date: 2014
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15492
Summary: In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.
id RCAP_b8cb1c01c395d7a79fa3eedffa13333a
oai_identifier_str oai:ria.ua.pt:10773/15492
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Severe plastic deformation of Al–Zn alloysEngenharia mecânicaLigas de alumínio - MicroestruturaPropriedades mecânicasDeformação plásticaIn this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.Este trabalho foi dedicado à análise mecânica e microestrutural de uma liga Al–Zn submetida a um processo de deformação plástica severa (SPD) e ao desenvolvimento de modelos microestruturais para descrever os comportamentos observados. Foi investigada detalhadamente a evolução das propriedades mecânicas e da microestrutura da liga Al–30wt% Zn, após ensaios de torção a alta pressão (HPT), em função do grau de deformação. A SPD promoveu o refinamento gradual do grão e a decomposição da solução sólida de base Al sobressaturada. A microestrutura inicial da liga Al–30wt% Zn continha fases de Al e Zn com grãos de tamanhos 15 e 1 m, respetivamente. A deformação plástica até 0.25, em compressão, promoveu a diminuição gradual do tamanho dos grãos de Al e Zn até 4 m e 252 nm, respetivamente. Simultaneamente, o tamanho médio das partículas de Zn na rede cristalina de grãos de Al aumentou de 20 para 60 nm e, de forma idêntica, também aumentaram os precipitados de Zn na proximidade ou nos contornos de grão. Esta transformação microestrutural foi acompanhada, à escala macroscópica, por um forte amaciamento da liga. Os ensaios HPT foram conduzidos até uma deformação de corte de 314. Com esta SPD, as dimensões dos grãos de Al e Zn diminuiram até à nanoescala; para 370 nm e 170 nm, respetivamente. Como resultado do ensaio HPT, a solução sólida sobressaturada de Al rica em Zn decompôs–se completamente e atingiu o estado de equilíbrio à temperatura ambiente, com o consequente amaciamento do material. Foi criado um novo modelo, baseado na microestrutura do material, que permite descrever o processo de amaciamento que ocorre durante a forte compressão da liga Al–30wt% Zn. O fenómeno foi definido por uma nova lei que relaciona o caminho livre médio das deslocações com a deformação plástica. O modelo proposto permite prever muito bem o amaciamento do material durante o processo HPT, tendo em consideração os efeitos do endurecimento por solução sólida e sua decomposição, o mecanismo de Orowan e a evolução da densidade de deslocações. Em particular, ficou demonstrado que o processo de amaciamento que ocorre durante o ensaio HPT pode ser atribuído principalmente à decomposição da solução sólida sobressaturada e, em menor medida, à evolução do caminho livre médio das deslocações com a deformação plástica.Universidade de Aveiro2018-07-20T14:00:53Z2014-01-05T00:00:00Z2014-01-052017-01-05T16:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/15492TID:101480598engBorodachenkova, Marinainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:49Zoai:ria.ua.pt:10773/15492Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:52:08.650786Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Severe plastic deformation of Al–Zn alloys
title Severe plastic deformation of Al–Zn alloys
spellingShingle Severe plastic deformation of Al–Zn alloys
Borodachenkova, Marina
Engenharia mecânica
Ligas de alumínio - Microestrutura
Propriedades mecânicas
Deformação plástica
title_short Severe plastic deformation of Al–Zn alloys
title_full Severe plastic deformation of Al–Zn alloys
title_fullStr Severe plastic deformation of Al–Zn alloys
title_full_unstemmed Severe plastic deformation of Al–Zn alloys
title_sort Severe plastic deformation of Al–Zn alloys
author Borodachenkova, Marina
author_facet Borodachenkova, Marina
author_role author
dc.contributor.author.fl_str_mv Borodachenkova, Marina
dc.subject.por.fl_str_mv Engenharia mecânica
Ligas de alumínio - Microestrutura
Propriedades mecânicas
Deformação plástica
topic Engenharia mecânica
Ligas de alumínio - Microestrutura
Propriedades mecânicas
Deformação plástica
description In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-05T00:00:00Z
2014-01-05
2017-01-05T16:00:00Z
2018-07-20T14:00:53Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15492
TID:101480598
url http://hdl.handle.net/10773/15492
identifier_str_mv TID:101480598
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594144581222400