Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Outros Autores: | , , , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10071/28846 |
Resumo: | This research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability. |
| id |
RCAP_b8398ce9d8af262cfbee508dfddd5dd7 |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/28846 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertaintyUnmanned Aerial VehicleDeep neural networksCalibrationUncertaintyReliabilityJamming identification5G6GThis research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability.CEUR-WS2023-06-30T10:41:28Z2023-01-01T00:00:00Z20232024-06-26T13:01:12Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/28846eng1613-0073Farkhari, H.Viana, J.Sebastião, P.Bernardo, L.Kahvazadeh, S.Dinis, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:08:20Zoai:repositorio.iscte-iul.pt:10071/28846Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:16:39.762748Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| title |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| spellingShingle |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty Farkhari, H. Unmanned Aerial Vehicle Deep neural networks Calibration Uncertainty Reliability Jamming identification 5G 6G |
| title_short |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| title_full |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| title_fullStr |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| title_full_unstemmed |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| title_sort |
Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty |
| author |
Farkhari, H. |
| author_facet |
Farkhari, H. Viana, J. Sebastião, P. Bernardo, L. Kahvazadeh, S. Dinis, R. |
| author_role |
author |
| author2 |
Viana, J. Sebastião, P. Bernardo, L. Kahvazadeh, S. Dinis, R. |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Farkhari, H. Viana, J. Sebastião, P. Bernardo, L. Kahvazadeh, S. Dinis, R. |
| dc.subject.por.fl_str_mv |
Unmanned Aerial Vehicle Deep neural networks Calibration Uncertainty Reliability Jamming identification 5G 6G |
| topic |
Unmanned Aerial Vehicle Deep neural networks Calibration Uncertainty Reliability Jamming identification 5G 6G |
| description |
This research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-06-30T10:41:28Z 2023-01-01T00:00:00Z 2023 2024-06-26T13:01:12Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/28846 |
| url |
http://hdl.handle.net/10071/28846 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1613-0073 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
CEUR-WS |
| publisher.none.fl_str_mv |
CEUR-WS |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597301386379264 |