Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty

Detalhes bibliográficos
Autor(a) principal: Farkhari, H.
Data de Publicação: 2023
Outros Autores: Viana, J., Sebastião, P., Bernardo, L., Kahvazadeh, S., Dinis, R.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/28846
Resumo: This research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability.
id RCAP_b8398ce9d8af262cfbee508dfddd5dd7
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/28846
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertaintyUnmanned Aerial VehicleDeep neural networksCalibrationUncertaintyReliabilityJamming identification5G6GThis research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability.CEUR-WS2023-06-30T10:41:28Z2023-01-01T00:00:00Z20232024-06-26T13:01:12Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/28846eng1613-0073Farkhari, H.Viana, J.Sebastião, P.Bernardo, L.Kahvazadeh, S.Dinis, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:08:20Zoai:repositorio.iscte-iul.pt:10071/28846Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:16:39.762748Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
title Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
spellingShingle Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
Farkhari, H.
Unmanned Aerial Vehicle
Deep neural networks
Calibration
Uncertainty
Reliability
Jamming identification
5G
6G
title_short Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
title_full Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
title_fullStr Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
title_full_unstemmed Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
title_sort Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty
author Farkhari, H.
author_facet Farkhari, H.
Viana, J.
Sebastião, P.
Bernardo, L.
Kahvazadeh, S.
Dinis, R.
author_role author
author2 Viana, J.
Sebastião, P.
Bernardo, L.
Kahvazadeh, S.
Dinis, R.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Farkhari, H.
Viana, J.
Sebastião, P.
Bernardo, L.
Kahvazadeh, S.
Dinis, R.
dc.subject.por.fl_str_mv Unmanned Aerial Vehicle
Deep neural networks
Calibration
Uncertainty
Reliability
Jamming identification
5G
6G
topic Unmanned Aerial Vehicle
Deep neural networks
Calibration
Uncertainty
Reliability
Jamming identification
5G
6G
description This research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-30T10:41:28Z
2023-01-01T00:00:00Z
2023
2024-06-26T13:01:12Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/28846
url http://hdl.handle.net/10071/28846
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1613-0073
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CEUR-WS
publisher.none.fl_str_mv CEUR-WS
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597301386379264