Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts

Bibliographic Details
Main Author: Rodideal, Nicolae
Publication Date: 2020
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/114034
Summary: Additive manufacturing is one of the main foundations of Industry 4.0. It aims, particularly, to increase productivity, reducing material waste due to machining and bring many advantages that overcome the conventional manufacturing processes. Wire and Arc Additive Manufacturing (WAAM) is an additive manufacturing process that employs an electric arc as heat source in order to melt and add material. It shows great versatility and freedom to fabricate parts using a layer-by-layer method of deposition. Despite the clear advantages presented, there still needs more progress in order to make it industrially feasible. One of the main challenges it faces is studying the mechanical properties bet on the desired geometry, type of material and the adopted parameters before employing these components in critical operational loading conditions. This dissertation aimed to assess the mechanical properties and fatigue resistance of HSLA parts manufactured by this technology. In this way, two type of samples were produced – one of low heat-input and another of high heat-input, in which the changing variable was the travel speed. For each type, three thin walled parts were obtained, measuring 180 x 100 mm each. After manufacturing all the required samples, three different regions were analysed – bottom, middle and top. Next, all parts were assiduously prepared in order to proceed with material characterization as well as testing, specifically, waviness, microstructure, electrical conductivity, microhardness, uniaxial tensile tests and lastly fatigue tests, with subsequent fracture surface observation through Scanning Electron Microscope (SEM). Fatigue tests were performed at room temperature on low heat-input samples with constant stress amplitude, stress ratio R=0.1 and frequencies between 12 Hz and 15 Hz. The S-N curve of the experimental results is presented along with an explanation within the context of the other characterization techniques results.
id RCAP_b6e44b4761250d2318f80f1f677230cc
oai_identifier_str oai:run.unl.pt:10362/114034
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel partsAdditive ManufacturingWAAMWeldingHSLA steelMechanical propertiesFatigueDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MecânicaAdditive manufacturing is one of the main foundations of Industry 4.0. It aims, particularly, to increase productivity, reducing material waste due to machining and bring many advantages that overcome the conventional manufacturing processes. Wire and Arc Additive Manufacturing (WAAM) is an additive manufacturing process that employs an electric arc as heat source in order to melt and add material. It shows great versatility and freedom to fabricate parts using a layer-by-layer method of deposition. Despite the clear advantages presented, there still needs more progress in order to make it industrially feasible. One of the main challenges it faces is studying the mechanical properties bet on the desired geometry, type of material and the adopted parameters before employing these components in critical operational loading conditions. This dissertation aimed to assess the mechanical properties and fatigue resistance of HSLA parts manufactured by this technology. In this way, two type of samples were produced – one of low heat-input and another of high heat-input, in which the changing variable was the travel speed. For each type, three thin walled parts were obtained, measuring 180 x 100 mm each. After manufacturing all the required samples, three different regions were analysed – bottom, middle and top. Next, all parts were assiduously prepared in order to proceed with material characterization as well as testing, specifically, waviness, microstructure, electrical conductivity, microhardness, uniaxial tensile tests and lastly fatigue tests, with subsequent fracture surface observation through Scanning Electron Microscope (SEM). Fatigue tests were performed at room temperature on low heat-input samples with constant stress amplitude, stress ratio R=0.1 and frequencies between 12 Hz and 15 Hz. The S-N curve of the experimental results is presented along with an explanation within the context of the other characterization techniques results.Vidal, CatarinaMachado, CarlaRUNRodideal, Nicolae2021-03-18T10:31:57Z2020-1220202020-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/114034enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:51:14Zoai:run.unl.pt:10362/114034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:22:28.125176Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
title Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
spellingShingle Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
Rodideal, Nicolae
Additive Manufacturing
WAAM
Welding
HSLA steel
Mechanical properties
Fatigue
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
title_short Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
title_full Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
title_fullStr Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
title_full_unstemmed Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
title_sort Mechanical characterization and fatigue assessment of wire and arc additive manufactured HSLA steel parts
author Rodideal, Nicolae
author_facet Rodideal, Nicolae
author_role author
dc.contributor.none.fl_str_mv Vidal, Catarina
Machado, Carla
RUN
dc.contributor.author.fl_str_mv Rodideal, Nicolae
dc.subject.por.fl_str_mv Additive Manufacturing
WAAM
Welding
HSLA steel
Mechanical properties
Fatigue
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
topic Additive Manufacturing
WAAM
Welding
HSLA steel
Mechanical properties
Fatigue
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
description Additive manufacturing is one of the main foundations of Industry 4.0. It aims, particularly, to increase productivity, reducing material waste due to machining and bring many advantages that overcome the conventional manufacturing processes. Wire and Arc Additive Manufacturing (WAAM) is an additive manufacturing process that employs an electric arc as heat source in order to melt and add material. It shows great versatility and freedom to fabricate parts using a layer-by-layer method of deposition. Despite the clear advantages presented, there still needs more progress in order to make it industrially feasible. One of the main challenges it faces is studying the mechanical properties bet on the desired geometry, type of material and the adopted parameters before employing these components in critical operational loading conditions. This dissertation aimed to assess the mechanical properties and fatigue resistance of HSLA parts manufactured by this technology. In this way, two type of samples were produced – one of low heat-input and another of high heat-input, in which the changing variable was the travel speed. For each type, three thin walled parts were obtained, measuring 180 x 100 mm each. After manufacturing all the required samples, three different regions were analysed – bottom, middle and top. Next, all parts were assiduously prepared in order to proceed with material characterization as well as testing, specifically, waviness, microstructure, electrical conductivity, microhardness, uniaxial tensile tests and lastly fatigue tests, with subsequent fracture surface observation through Scanning Electron Microscope (SEM). Fatigue tests were performed at room temperature on low heat-input samples with constant stress amplitude, stress ratio R=0.1 and frequencies between 12 Hz and 15 Hz. The S-N curve of the experimental results is presented along with an explanation within the context of the other characterization techniques results.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
2020
2020-12-01T00:00:00Z
2021-03-18T10:31:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/114034
url http://hdl.handle.net/10362/114034
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596647729266688