Deep convolutional neural networks applied to hand keypoints estimation

Detalhes bibliográficos
Autor(a) principal: Santos, Bruno M.
Data de Publicação: 2020
Outros Autores: Pais, Pedro, Ribeiro, Francisco M., Lima, José, Goncalves, Gil, Pinto, Vítor H.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/21876
Resumo: Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.
id RCAP_b621e059b97d2af6b3d3c7a554a4ada9
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/21876
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Deep convolutional neural networks applied to hand keypoints estimationHand keypoints estimationConvolutional neural networkVGGFreiHANDAccurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.The authors acknowledge the support of R&D Unit SYSTEC Base (UIDB/00147/2020) and Programmatic (UIDP/00147/2020) and the ARISE Associated Laboratory (LA/P/0112/2020), as well as the support of projects: Continental FoF, with reference POCI-01-0247-FEDER- 047512, co-funded by FEDER, through COMPETE 2020, Digitalizac¸ ˜ao da Arte Humana (Cibertoque), with reference POCI-01-0247-FEDER-072627, co-funded by FEDER, through COMPETE 2020 and Next-Gen Quality Control IoRT System with reference POCI-01-0247-FEDER-072616, co-funded by FEDER, through COMPETE 2020.IEEEBiblioteca Digital do IPBSantos, Bruno M.Pais, PedroRibeiro, Francisco M.Lima, JoséGoncalves, GilPinto, Vítor H.2020-04-30T09:42:12Z20232023-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/21876engSantos, Bruno M.; Pais, Pedro; Ribeiro, Francisco M.; Lima, José; Goncalves, Gil; Pinto, Vítor H. (2023). Deep convolutional neural networks applied to hand keypoints estimation. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar, Portugal – April 26-27, 2023. eISSN 2573-9387. p. 93-982573-936010.1109/ICARSC58346.2023.101296212573-9387info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:11:57Zoai:bibliotecadigital.ipb.pt:10198/21876Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:39:06.331006Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Deep convolutional neural networks applied to hand keypoints estimation
title Deep convolutional neural networks applied to hand keypoints estimation
spellingShingle Deep convolutional neural networks applied to hand keypoints estimation
Santos, Bruno M.
Hand keypoints estimation
Convolutional neural network
VGG
FreiHAND
title_short Deep convolutional neural networks applied to hand keypoints estimation
title_full Deep convolutional neural networks applied to hand keypoints estimation
title_fullStr Deep convolutional neural networks applied to hand keypoints estimation
title_full_unstemmed Deep convolutional neural networks applied to hand keypoints estimation
title_sort Deep convolutional neural networks applied to hand keypoints estimation
author Santos, Bruno M.
author_facet Santos, Bruno M.
Pais, Pedro
Ribeiro, Francisco M.
Lima, José
Goncalves, Gil
Pinto, Vítor H.
author_role author
author2 Pais, Pedro
Ribeiro, Francisco M.
Lima, José
Goncalves, Gil
Pinto, Vítor H.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Santos, Bruno M.
Pais, Pedro
Ribeiro, Francisco M.
Lima, José
Goncalves, Gil
Pinto, Vítor H.
dc.subject.por.fl_str_mv Hand keypoints estimation
Convolutional neural network
VGG
FreiHAND
topic Hand keypoints estimation
Convolutional neural network
VGG
FreiHAND
description Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-30T09:42:12Z
2023
2023-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/21876
url http://hdl.handle.net/10198/21876
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Santos, Bruno M.; Pais, Pedro; Ribeiro, Francisco M.; Lima, José; Goncalves, Gil; Pinto, Vítor H. (2023). Deep convolutional neural networks applied to hand keypoints estimation. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar, Portugal – April 26-27, 2023. eISSN 2573-9387. p. 93-98
2573-9360
10.1109/ICARSC58346.2023.10129621
2573-9387
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592111633530880