Deep convolutional neural networks applied to hand keypoints estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10198/21876 |
Resumo: | Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively. |
id |
RCAP_b621e059b97d2af6b3d3c7a554a4ada9 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/21876 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Deep convolutional neural networks applied to hand keypoints estimationHand keypoints estimationConvolutional neural networkVGGFreiHANDAccurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.The authors acknowledge the support of R&D Unit SYSTEC Base (UIDB/00147/2020) and Programmatic (UIDP/00147/2020) and the ARISE Associated Laboratory (LA/P/0112/2020), as well as the support of projects: Continental FoF, with reference POCI-01-0247-FEDER- 047512, co-funded by FEDER, through COMPETE 2020, Digitalizac¸ ˜ao da Arte Humana (Cibertoque), with reference POCI-01-0247-FEDER-072627, co-funded by FEDER, through COMPETE 2020 and Next-Gen Quality Control IoRT System with reference POCI-01-0247-FEDER-072616, co-funded by FEDER, through COMPETE 2020.IEEEBiblioteca Digital do IPBSantos, Bruno M.Pais, PedroRibeiro, Francisco M.Lima, JoséGoncalves, GilPinto, Vítor H.2020-04-30T09:42:12Z20232023-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/21876engSantos, Bruno M.; Pais, Pedro; Ribeiro, Francisco M.; Lima, José; Goncalves, Gil; Pinto, Vítor H. (2023). Deep convolutional neural networks applied to hand keypoints estimation. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar, Portugal – April 26-27, 2023. eISSN 2573-9387. p. 93-982573-936010.1109/ICARSC58346.2023.101296212573-9387info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:11:57Zoai:bibliotecadigital.ipb.pt:10198/21876Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:39:06.331006Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Deep convolutional neural networks applied to hand keypoints estimation |
title |
Deep convolutional neural networks applied to hand keypoints estimation |
spellingShingle |
Deep convolutional neural networks applied to hand keypoints estimation Santos, Bruno M. Hand keypoints estimation Convolutional neural network VGG FreiHAND |
title_short |
Deep convolutional neural networks applied to hand keypoints estimation |
title_full |
Deep convolutional neural networks applied to hand keypoints estimation |
title_fullStr |
Deep convolutional neural networks applied to hand keypoints estimation |
title_full_unstemmed |
Deep convolutional neural networks applied to hand keypoints estimation |
title_sort |
Deep convolutional neural networks applied to hand keypoints estimation |
author |
Santos, Bruno M. |
author_facet |
Santos, Bruno M. Pais, Pedro Ribeiro, Francisco M. Lima, José Goncalves, Gil Pinto, Vítor H. |
author_role |
author |
author2 |
Pais, Pedro Ribeiro, Francisco M. Lima, José Goncalves, Gil Pinto, Vítor H. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Santos, Bruno M. Pais, Pedro Ribeiro, Francisco M. Lima, José Goncalves, Gil Pinto, Vítor H. |
dc.subject.por.fl_str_mv |
Hand keypoints estimation Convolutional neural network VGG FreiHAND |
topic |
Hand keypoints estimation Convolutional neural network VGG FreiHAND |
description |
Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-30T09:42:12Z 2023 2023-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/21876 |
url |
http://hdl.handle.net/10198/21876 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Santos, Bruno M.; Pais, Pedro; Ribeiro, Francisco M.; Lima, José; Goncalves, Gil; Pinto, Vítor H. (2023). Deep convolutional neural networks applied to hand keypoints estimation. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar, Portugal – April 26-27, 2023. eISSN 2573-9387. p. 93-98 2573-9360 10.1109/ICARSC58346.2023.10129621 2573-9387 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592111633530880 |