Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/41047 |
Summary: | With the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors. |
| id |
RCAP_b5ceb447456fdfa1a4155fe7a1fd885a |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/41047 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniquesData miningSequential rulesAssociation rulesSystem maintenanceHvacWith the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors.Com o recente aumento da popularidade dos dispositivos inteligentes, a maioria dos produtos começou a oferecer versões inteligentes. Este tipo de aparelhos é frequentemente acompanhado por aplicações que oferecem aos utilizadores um maior controlo sobre eles. Através das aplicações, os utilizadores são capazes de configurar remotamente os dispositivos e podem também ser notificados sempre que ocorre um problema. As soluções de HVAC inteligentes oferecidas pela Bosch estão ligadas a um serviço de backend que regista e processa as mensagens de erro recebidas e decide quando notificar o cliente. Com um aumento previsto no número de dispositivos inteligentes, torna-se interessante explorar as mensagens de erro registadas. Os dados foram processados e convertidos para um formato mais fácil de analisar. Após uma breve análise, decidiu-se que seria interessante explorar as relações entre as mensagens de erro. Com este objectivo em mente, foi criado um processo para analisar os dados utilizando a extracção de regras de Associação e Sequenciais. Os resultados obtidos mostram que uma parte significativa das mensagens de erro recebidas não correspondem a erros reais, mas sim a uma má interpretação, por parte das unidades de controlo, da falta de resposta dos sensores dos aparelhos.2025-08-02T00:00:00Z2023-07-13T00:00:00Z2023-07-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41047engCosta, Luís Miguel Dias dos Santos Pereira dainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:53:08Zoai:ria.ua.pt:10773/41047Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:23:20.244920Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| title |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| spellingShingle |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques Costa, Luís Miguel Dias dos Santos Pereira da Data mining Sequential rules Association rules System maintenance Hvac |
| title_short |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| title_full |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| title_fullStr |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| title_full_unstemmed |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| title_sort |
Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques |
| author |
Costa, Luís Miguel Dias dos Santos Pereira da |
| author_facet |
Costa, Luís Miguel Dias dos Santos Pereira da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Costa, Luís Miguel Dias dos Santos Pereira da |
| dc.subject.por.fl_str_mv |
Data mining Sequential rules Association rules System maintenance Hvac |
| topic |
Data mining Sequential rules Association rules System maintenance Hvac |
| description |
With the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-13T00:00:00Z 2023-07-13 2025-08-02T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41047 |
| url |
http://hdl.handle.net/10773/41047 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594555522351104 |