Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques

Bibliographic Details
Main Author: Costa, Luís Miguel Dias dos Santos Pereira da
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/41047
Summary: With the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors.
id RCAP_b5ceb447456fdfa1a4155fe7a1fd885a
oai_identifier_str oai:ria.ua.pt:10773/41047
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniquesData miningSequential rulesAssociation rulesSystem maintenanceHvacWith the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors.Com o recente aumento da popularidade dos dispositivos inteligentes, a maioria dos produtos começou a oferecer versões inteligentes. Este tipo de aparelhos é frequentemente acompanhado por aplicações que oferecem aos utilizadores um maior controlo sobre eles. Através das aplicações, os utilizadores são capazes de configurar remotamente os dispositivos e podem também ser notificados sempre que ocorre um problema. As soluções de HVAC inteligentes oferecidas pela Bosch estão ligadas a um serviço de backend que regista e processa as mensagens de erro recebidas e decide quando notificar o cliente. Com um aumento previsto no número de dispositivos inteligentes, torna-se interessante explorar as mensagens de erro registadas. Os dados foram processados e convertidos para um formato mais fácil de analisar. Após uma breve análise, decidiu-se que seria interessante explorar as relações entre as mensagens de erro. Com este objectivo em mente, foi criado um processo para analisar os dados utilizando a extracção de regras de Associação e Sequenciais. Os resultados obtidos mostram que uma parte significativa das mensagens de erro recebidas não correspondem a erros reais, mas sim a uma má interpretação, por parte das unidades de controlo, da falta de resposta dos sensores dos aparelhos.2025-08-02T00:00:00Z2023-07-13T00:00:00Z2023-07-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41047engCosta, Luís Miguel Dias dos Santos Pereira dainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:53:08Zoai:ria.ua.pt:10773/41047Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:23:20.244920Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
title Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
spellingShingle Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
Costa, Luís Miguel Dias dos Santos Pereira da
Data mining
Sequential rules
Association rules
System maintenance
Hvac
title_short Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
title_full Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
title_fullStr Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
title_full_unstemmed Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
title_sort Connected HVAC systems behaviour analysis: data mining on error codes using DS/ML techniques
author Costa, Luís Miguel Dias dos Santos Pereira da
author_facet Costa, Luís Miguel Dias dos Santos Pereira da
author_role author
dc.contributor.author.fl_str_mv Costa, Luís Miguel Dias dos Santos Pereira da
dc.subject.por.fl_str_mv Data mining
Sequential rules
Association rules
System maintenance
Hvac
topic Data mining
Sequential rules
Association rules
System maintenance
Hvac
description With the recent growth in popularity in smart devices, most products have started to offer smart variations. These connected appliances are often accompanied by applications that give the users more control over them. Through them the users are capable of remotely configuring the devices and can also be notified whenever a problem occurs. The smart HVAC solutions offered by Bosch are connected to a backend service that logs and processes the incoming error messages and decides when to notify the customer. With the number of connected devices predicted to increase, it has become appealing to explore the logged error messages. The data was processed and converted to a format that was easier to analyze. After a brief analysis, it was decided that it would be interesting to explore the relationships between error messages. With this goal in mind, a process was set up to analyze the data using Association and Sequential rule mining. The obtained results show that a significant part of the incoming error messages did not correspond to real errors but were instead the result of the control units misinterpreting the lack of response from the appliances sensors.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-13T00:00:00Z
2023-07-13
2025-08-02T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41047
url http://hdl.handle.net/10773/41047
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594555522351104