Gestão de Conhecimento de uma Instituição de Educação

Bibliographic Details
Main Author: Cabeda, José Eduardo Barreira
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/14055
Summary: With the emergence of the Internet, bigger computation capacity and the fall of costs in storing information came a flood of new data and the capacity to analyze it. Many areas have developed and progressed due to this, such as fintech and online advertising, but others have only now started to develop. One of these is the educational data mining and learning analytics which has enormous potential to empower the teachers and students to be more successful. To this end, the present work analyzes data relating the students of Software Engineer Department (DEI) of Instituto Superior de Engenharia do Porto (ISEP) with the goal of improving students’ success rate, by facilitating the comprehension of the information, detect patterns in the data and predict future events directly related to the students’ behavior. This work has proposed and implemented an architecture which presents the results to the user through a data portal. This portal has been divided into two components. The first agglomerates the analysis of the data while the second presents models built with Random forests, Decision Trees and Naive Bayes to predict the students’ behavior.
id RCAP_b56e28834797649a0c7abec046886e9f
oai_identifier_str oai:recipp.ipp.pt:10400.22/14055
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Gestão de Conhecimento de uma Instituição de EducaçãoMachine LearningBusiness IntelligenceEducational Data MiningLearning AnalyticsR LanguageWith the emergence of the Internet, bigger computation capacity and the fall of costs in storing information came a flood of new data and the capacity to analyze it. Many areas have developed and progressed due to this, such as fintech and online advertising, but others have only now started to develop. One of these is the educational data mining and learning analytics which has enormous potential to empower the teachers and students to be more successful. To this end, the present work analyzes data relating the students of Software Engineer Department (DEI) of Instituto Superior de Engenharia do Porto (ISEP) with the goal of improving students’ success rate, by facilitating the comprehension of the information, detect patterns in the data and predict future events directly related to the students’ behavior. This work has proposed and implemented an architecture which presents the results to the user through a data portal. This portal has been divided into two components. The first agglomerates the analysis of the data while the second presents models built with Random forests, Decision Trees and Naive Bayes to predict the students’ behavior.Ferreira, Carlos Manuel Abreu GomesREPOSITÓRIO P.PORTOCabeda, José Eduardo Barreira2019-06-19T13:57:26Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/14055urn:tid:202166538enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:26:03Zoai:recipp.ipp.pt:10400.22/14055Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:54:20.220161Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Gestão de Conhecimento de uma Instituição de Educação
title Gestão de Conhecimento de uma Instituição de Educação
spellingShingle Gestão de Conhecimento de uma Instituição de Educação
Cabeda, José Eduardo Barreira
Machine Learning
Business Intelligence
Educational Data Mining
Learning Analytics
R Language
title_short Gestão de Conhecimento de uma Instituição de Educação
title_full Gestão de Conhecimento de uma Instituição de Educação
title_fullStr Gestão de Conhecimento de uma Instituição de Educação
title_full_unstemmed Gestão de Conhecimento de uma Instituição de Educação
title_sort Gestão de Conhecimento de uma Instituição de Educação
author Cabeda, José Eduardo Barreira
author_facet Cabeda, José Eduardo Barreira
author_role author
dc.contributor.none.fl_str_mv Ferreira, Carlos Manuel Abreu Gomes
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Cabeda, José Eduardo Barreira
dc.subject.por.fl_str_mv Machine Learning
Business Intelligence
Educational Data Mining
Learning Analytics
R Language
topic Machine Learning
Business Intelligence
Educational Data Mining
Learning Analytics
R Language
description With the emergence of the Internet, bigger computation capacity and the fall of costs in storing information came a flood of new data and the capacity to analyze it. Many areas have developed and progressed due to this, such as fintech and online advertising, but others have only now started to develop. One of these is the educational data mining and learning analytics which has enormous potential to empower the teachers and students to be more successful. To this end, the present work analyzes data relating the students of Software Engineer Department (DEI) of Instituto Superior de Engenharia do Porto (ISEP) with the goal of improving students’ success rate, by facilitating the comprehension of the information, detect patterns in the data and predict future events directly related to the students’ behavior. This work has proposed and implemented an architecture which presents the results to the user through a data portal. This portal has been divided into two components. The first agglomerates the analysis of the data while the second presents models built with Random forests, Decision Trees and Naive Bayes to predict the students’ behavior.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2019-06-19T13:57:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/14055
urn:tid:202166538
url http://hdl.handle.net/10400.22/14055
identifier_str_mv urn:tid:202166538
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600748611436544