Lamb meat tenderness prediction using neural networks and sensitivity analysis
| Main Author: | |
|---|---|
| Publication Date: | 2005 |
| Other Authors: | , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/4289 |
Summary: | The assessment of quality is a key factor for the meat industry, where the aim is to fulfill the consumer's needs. In particular, tenderness is considered the most important characteristic affecting consumer perception of taste. In this paper, a Neural Network Ensemble, with feature selection based on a Sensitivity Analysis procedure, is proposed to predict lamb meat tenderness. This difficult real-world problem is defined in terms of two regression tasks, by using instrumental measurements and a sensory panel. In both cases, the proposed solution outperformed other neural approaches and the Multiple Regression method. |
| id |
RCAP_b34ac6901eccf985beb45545e8434edb |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/4289 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Lamb meat tenderness prediction using neural networks and sensitivity analysisRegressionMultilayer perceptronsMultiple regressionMeat qualityEnsemblesData miningScience & TechnologyThe assessment of quality is a key factor for the meat industry, where the aim is to fulfill the consumer's needs. In particular, tenderness is considered the most important characteristic affecting consumer perception of taste. In this paper, a Neural Network Ensemble, with feature selection based on a Sensitivity Analysis procedure, is proposed to predict lamb meat tenderness. This difficult real-world problem is defined in terms of two regression tasks, by using instrumental measurements and a sensory panel. In both cases, the proposed solution outperformed other neural approaches and the Multiple Regression method.EUROSIS-ETIUniversidade do MinhoCortez, PauloPortelinha, ManuelRodrigues, SandraCadavez, VascoTeixeira, Alfredo2005-102005-10-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/4289engTEIXEIRA. J. Feliz; BRITO, A., ed. lit. – “ESM’2005 : proceedings of the European Simulation Multiconference, Oporto, Portugal, 2005. [S.l.]: Eurosis, [2005]. ISBN 90-77381-22-8. p. 177-181.90-77381-22-8info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:16:20Zoai:repositorium.sdum.uminho.pt:1822/4289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:21:12.386508Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| title |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| spellingShingle |
Lamb meat tenderness prediction using neural networks and sensitivity analysis Cortez, Paulo Regression Multilayer perceptrons Multiple regression Meat quality Ensembles Data mining Science & Technology |
| title_short |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| title_full |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| title_fullStr |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| title_full_unstemmed |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| title_sort |
Lamb meat tenderness prediction using neural networks and sensitivity analysis |
| author |
Cortez, Paulo |
| author_facet |
Cortez, Paulo Portelinha, Manuel Rodrigues, Sandra Cadavez, Vasco Teixeira, Alfredo |
| author_role |
author |
| author2 |
Portelinha, Manuel Rodrigues, Sandra Cadavez, Vasco Teixeira, Alfredo |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Cortez, Paulo Portelinha, Manuel Rodrigues, Sandra Cadavez, Vasco Teixeira, Alfredo |
| dc.subject.por.fl_str_mv |
Regression Multilayer perceptrons Multiple regression Meat quality Ensembles Data mining Science & Technology |
| topic |
Regression Multilayer perceptrons Multiple regression Meat quality Ensembles Data mining Science & Technology |
| description |
The assessment of quality is a key factor for the meat industry, where the aim is to fulfill the consumer's needs. In particular, tenderness is considered the most important characteristic affecting consumer perception of taste. In this paper, a Neural Network Ensemble, with feature selection based on a Sensitivity Analysis procedure, is proposed to predict lamb meat tenderness. This difficult real-world problem is defined in terms of two regression tasks, by using instrumental measurements and a sensory panel. In both cases, the proposed solution outperformed other neural approaches and the Multiple Regression method. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-10 2005-10-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/4289 |
| url |
http://hdl.handle.net/1822/4289 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
TEIXEIRA. J. Feliz; BRITO, A., ed. lit. – “ESM’2005 : proceedings of the European Simulation Multiconference, Oporto, Portugal, 2005. [S.l.]: Eurosis, [2005]. ISBN 90-77381-22-8. p. 177-181. 90-77381-22-8 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
EUROSIS-ETI |
| publisher.none.fl_str_mv |
EUROSIS-ETI |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595894736355328 |