Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | https://doi.org/10.57805/revstat.v22i3.539 |
Summary: | The inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes. |
| id |
RCAP_b2fce3a5fed24aff05035126de85afd9 |
|---|---|
| oai_identifier_str |
oai:revstat:article/539 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering DataBayes estimatorsEM algorithmGeneralized Type II progressive hybrid censoringHPD credible intervalInverse Burr distributionSeparation of sewer solidsThe inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes.Statistics Portugal2024-09-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v22i3.539https://doi.org/10.57805/revstat.v22i3.539REVSTAT-Statistical Journal; Vol. 22 No. 3 (2024): REVSTAT-Statistical Journal; 343-367REVSTAT; Vol. 22 N.º 3 (2024): REVSTAT-Statistical Journal; 343-3672183-03711645-6726reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/539https://revstat.ine.pt/index.php/REVSTAT/article/view/539/733Copyright (c) 2024 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessAsadi, SaeidPanahi , HaniehParviz, Parya2024-09-21T06:30:21Zoai:revstat:article/539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T10:51:20.141654Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| title |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| spellingShingle |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data Asadi, Saeid Bayes estimators EM algorithm Generalized Type II progressive hybrid censoring HPD credible interval Inverse Burr distribution Separation of sewer solids |
| title_short |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| title_full |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| title_fullStr |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| title_full_unstemmed |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| title_sort |
Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data |
| author |
Asadi, Saeid |
| author_facet |
Asadi, Saeid Panahi , Hanieh Parviz, Parya |
| author_role |
author |
| author2 |
Panahi , Hanieh Parviz, Parya |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Asadi, Saeid Panahi , Hanieh Parviz, Parya |
| dc.subject.por.fl_str_mv |
Bayes estimators EM algorithm Generalized Type II progressive hybrid censoring HPD credible interval Inverse Burr distribution Separation of sewer solids |
| topic |
Bayes estimators EM algorithm Generalized Type II progressive hybrid censoring HPD credible interval Inverse Burr distribution Separation of sewer solids |
| description |
The inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-09-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v22i3.539 https://doi.org/10.57805/revstat.v22i3.539 |
| url |
https://doi.org/10.57805/revstat.v22i3.539 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/539 https://revstat.ine.pt/index.php/REVSTAT/article/view/539/733 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2024 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2024 REVSTAT-Statistical Journal |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Statistics Portugal |
| publisher.none.fl_str_mv |
Statistics Portugal |
| dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 22 No. 3 (2024): REVSTAT-Statistical Journal; 343-367 REVSTAT; Vol. 22 N.º 3 (2024): REVSTAT-Statistical Journal; 343-367 2183-0371 1645-6726 reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833591312207577088 |