Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data

Bibliographic Details
Main Author: Asadi, Saeid
Publication Date: 2024
Other Authors: Panahi , Hanieh, Parviz, Parya
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://doi.org/10.57805/revstat.v22i3.539
Summary: The inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes.
id RCAP_b2fce3a5fed24aff05035126de85afd9
oai_identifier_str oai:revstat:article/539
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering DataBayes estimatorsEM algorithmGeneralized Type II progressive hybrid censoringHPD credible intervalInverse Burr distributionSeparation of sewer solidsThe inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes.Statistics Portugal2024-09-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v22i3.539https://doi.org/10.57805/revstat.v22i3.539REVSTAT-Statistical Journal; Vol. 22 No. 3 (2024): REVSTAT-Statistical Journal; 343-367REVSTAT; Vol. 22 N.º 3 (2024): REVSTAT-Statistical Journal; 343-3672183-03711645-6726reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/539https://revstat.ine.pt/index.php/REVSTAT/article/view/539/733Copyright (c) 2024 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessAsadi, SaeidPanahi , HaniehParviz, Parya2024-09-21T06:30:21Zoai:revstat:article/539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T10:51:20.141654Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
title Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
spellingShingle Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
Asadi, Saeid
Bayes estimators
EM algorithm
Generalized Type II progressive hybrid censoring
HPD credible interval
Inverse Burr distribution
Separation of sewer solids
title_short Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
title_full Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
title_fullStr Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
title_full_unstemmed Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
title_sort Estimation for Inverse Burr Distribution under Generalized Progressive Hybrid Censored data with an application to Wastewater Engineering Data
author Asadi, Saeid
author_facet Asadi, Saeid
Panahi , Hanieh
Parviz, Parya
author_role author
author2 Panahi , Hanieh
Parviz, Parya
author2_role author
author
dc.contributor.author.fl_str_mv Asadi, Saeid
Panahi , Hanieh
Parviz, Parya
dc.subject.por.fl_str_mv Bayes estimators
EM algorithm
Generalized Type II progressive hybrid censoring
HPD credible interval
Inverse Burr distribution
Separation of sewer solids
topic Bayes estimators
EM algorithm
Generalized Type II progressive hybrid censoring
HPD credible interval
Inverse Burr distribution
Separation of sewer solids
description The inverse Burr distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this article, the estimation of parameters of the inverse Burr distribution based on generalized Type II progressive hybrid censored sample is studied. The expectation-maximization (EM) algorithm is employed for computing the maximum likelihood estimates of the unknown parameters. It is shown that the maximum likelihood estimates exist uniquely. The asymptotic confidence intervals for the parameters are constructed using the missing value principle. Under Bayesian framework, the Bayes estimators are developed based on Lindley's technique and Metropolis-Hastings algorithm. Furthermore, the highest posterior density (HPD) credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and sewer invert trap real data is presented to exemplify the theoretical outcomes.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.57805/revstat.v22i3.539
https://doi.org/10.57805/revstat.v22i3.539
url https://doi.org/10.57805/revstat.v22i3.539
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revstat.ine.pt/index.php/REVSTAT/article/view/539
https://revstat.ine.pt/index.php/REVSTAT/article/view/539/733
dc.rights.driver.fl_str_mv Copyright (c) 2024 REVSTAT-Statistical Journal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 REVSTAT-Statistical Journal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Statistics Portugal
publisher.none.fl_str_mv Statistics Portugal
dc.source.none.fl_str_mv REVSTAT-Statistical Journal; Vol. 22 No. 3 (2024): REVSTAT-Statistical Journal; 343-367
REVSTAT; Vol. 22 N.º 3 (2024): REVSTAT-Statistical Journal; 343-367
2183-0371
1645-6726
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591312207577088