Visualising time-evolving semantic biomedical data
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/25394 |
Summary: | Today, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies. |
id |
RCAP_b1563e1df9d2d1d1f3dbbcce7a522e74 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/25394 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Visualising time-evolving semantic biomedical dataBiomedical dataTemporal dataData visualisationEvidence-based medicineOntology evolutionToday, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies.IEEEBiblioteca Digital do IPBPereira, ArnaldoRafael Almeida, JoaoLopes, Rui PedroOliveira, José Luís2022-04-20T14:45:06Z20222022-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/25394porPereira, Arnaldo; Rafael Almeida, Joao; Lopes, Rui Pedro; Oliveira, José Luís. (2022). Visualising time-evolving semantic biomedical data. 35th International Symposium on Computer-Based Medical Systems (CBMS). p. 1-6. 21-23 July 2022, Shenzen, China. ISBN 978-1-6654-6770-4978-1-6654-6770-42372-9198info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:16:09Zoai:bibliotecadigital.ipb.pt:10198/25394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:43:34.708233Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Visualising time-evolving semantic biomedical data |
title |
Visualising time-evolving semantic biomedical data |
spellingShingle |
Visualising time-evolving semantic biomedical data Pereira, Arnaldo Biomedical data Temporal data Data visualisation Evidence-based medicine Ontology evolution |
title_short |
Visualising time-evolving semantic biomedical data |
title_full |
Visualising time-evolving semantic biomedical data |
title_fullStr |
Visualising time-evolving semantic biomedical data |
title_full_unstemmed |
Visualising time-evolving semantic biomedical data |
title_sort |
Visualising time-evolving semantic biomedical data |
author |
Pereira, Arnaldo |
author_facet |
Pereira, Arnaldo Rafael Almeida, Joao Lopes, Rui Pedro Oliveira, José Luís |
author_role |
author |
author2 |
Rafael Almeida, Joao Lopes, Rui Pedro Oliveira, José Luís |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Pereira, Arnaldo Rafael Almeida, Joao Lopes, Rui Pedro Oliveira, José Luís |
dc.subject.por.fl_str_mv |
Biomedical data Temporal data Data visualisation Evidence-based medicine Ontology evolution |
topic |
Biomedical data Temporal data Data visualisation Evidence-based medicine Ontology evolution |
description |
Today, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-20T14:45:06Z 2022 2022-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/25394 |
url |
http://hdl.handle.net/10198/25394 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Pereira, Arnaldo; Rafael Almeida, Joao; Lopes, Rui Pedro; Oliveira, José Luís. (2022). Visualising time-evolving semantic biomedical data. 35th International Symposium on Computer-Based Medical Systems (CBMS). p. 1-6. 21-23 July 2022, Shenzen, China. ISBN 978-1-6654-6770-4 978-1-6654-6770-4 2372-9198 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592184996102144 |