Business clients´segmentation based on activity : a banking approach
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/93269 |
Summary: | Internship report presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in knowledge Management and Business Intelligence |
id |
RCAP_afcfb71ea6564cf12d9e73c16aa9757e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/93269 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Business clients´segmentation based on activity : a banking approachB2B SegmentationBanking SegmentationCluster AnalysisHierarchical K-MeansInternship report presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in knowledge Management and Business IntelligenceClustering algorithms are frequently used by companies to segment their customers in order to develop accurate marketing strategies. The K-means is one of the most popular algorithms, despite its drawbacks in terms of seeds’ generation. In this study, several clustering algorithms were tested but in the end the K-means initialized with random seeds was used to segment the data due to its better performance. This B2B segmentation resulted in four clusters based on the activity patterns of each business client, The Loyals, The Minglers, The Challengers and The Believers. Each one of these clusters shows a different type of relationship with the bank, being the bank the first choice for The Loyals and for the Believers but not for the others.Jesus, Frederico Miguel Campos Cruz Ribeiro deRUNMarques, Pedro Afonso Bandeira Ferreira2020-02-24T12:39:02Z2019-12-182019-12-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/93269TID:202447227enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:43:41Zoai:run.unl.pt:10362/93269Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:14:57.139377Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Business clients´segmentation based on activity : a banking approach |
title |
Business clients´segmentation based on activity : a banking approach |
spellingShingle |
Business clients´segmentation based on activity : a banking approach Marques, Pedro Afonso Bandeira Ferreira B2B Segmentation Banking Segmentation Cluster Analysis Hierarchical K-Means |
title_short |
Business clients´segmentation based on activity : a banking approach |
title_full |
Business clients´segmentation based on activity : a banking approach |
title_fullStr |
Business clients´segmentation based on activity : a banking approach |
title_full_unstemmed |
Business clients´segmentation based on activity : a banking approach |
title_sort |
Business clients´segmentation based on activity : a banking approach |
author |
Marques, Pedro Afonso Bandeira Ferreira |
author_facet |
Marques, Pedro Afonso Bandeira Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jesus, Frederico Miguel Campos Cruz Ribeiro de RUN |
dc.contributor.author.fl_str_mv |
Marques, Pedro Afonso Bandeira Ferreira |
dc.subject.por.fl_str_mv |
B2B Segmentation Banking Segmentation Cluster Analysis Hierarchical K-Means |
topic |
B2B Segmentation Banking Segmentation Cluster Analysis Hierarchical K-Means |
description |
Internship report presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in knowledge Management and Business Intelligence |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-18 2019-12-18T00:00:00Z 2020-02-24T12:39:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/93269 TID:202447227 |
url |
http://hdl.handle.net/10362/93269 |
identifier_str_mv |
TID:202447227 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596549954797568 |