Short-term electricity load forecasting with machine learning
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/112349 |
Summary: | Aguilar Madrid, E., & Antonio, N. (2021). Short-term electricity load forecasting with machine learning. Information (Switzerland), 12(2), 1-21. [50]. https://doi.org/10.3390/info12020050 |
id |
RCAP_ad9b364963f1af969e0686abf55db80b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/112349 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Short-term electricity load forecasting with machine learningElectricityElectricity marketMachine learningShort-term load forecastingWeekly forecastInformation SystemsSDG 9 - Industry, Innovation, and InfrastructureAguilar Madrid, E., & Antonio, N. (2021). Short-term electricity load forecasting with machine learning. Information (Switzerland), 12(2), 1-21. [50]. https://doi.org/10.3390/info12020050An accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units’ planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydrothermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This research proposes a set of machine learning (ML) models to improve the accuracy of 168 h forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model’s interpretation, which provided a relevant additional result, the features’ importance in the forecasting.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNAguilar Madrid, ErnestoAntónio, Nuno2021-02-24T02:07:30Z2021-02-202021-02-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/112349eng2078-2489PURE: 28265368https://doi.org/10.3390/info12020050info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-09-23T01:38:08Zoai:run.unl.pt:10362/112349Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:21:48.601267Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Short-term electricity load forecasting with machine learning |
title |
Short-term electricity load forecasting with machine learning |
spellingShingle |
Short-term electricity load forecasting with machine learning Aguilar Madrid, Ernesto Electricity Electricity market Machine learning Short-term load forecasting Weekly forecast Information Systems SDG 9 - Industry, Innovation, and Infrastructure |
title_short |
Short-term electricity load forecasting with machine learning |
title_full |
Short-term electricity load forecasting with machine learning |
title_fullStr |
Short-term electricity load forecasting with machine learning |
title_full_unstemmed |
Short-term electricity load forecasting with machine learning |
title_sort |
Short-term electricity load forecasting with machine learning |
author |
Aguilar Madrid, Ernesto |
author_facet |
Aguilar Madrid, Ernesto António, Nuno |
author_role |
author |
author2 |
António, Nuno |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Aguilar Madrid, Ernesto António, Nuno |
dc.subject.por.fl_str_mv |
Electricity Electricity market Machine learning Short-term load forecasting Weekly forecast Information Systems SDG 9 - Industry, Innovation, and Infrastructure |
topic |
Electricity Electricity market Machine learning Short-term load forecasting Weekly forecast Information Systems SDG 9 - Industry, Innovation, and Infrastructure |
description |
Aguilar Madrid, E., & Antonio, N. (2021). Short-term electricity load forecasting with machine learning. Information (Switzerland), 12(2), 1-21. [50]. https://doi.org/10.3390/info12020050 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-24T02:07:30Z 2021-02-20 2021-02-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/112349 |
url |
http://hdl.handle.net/10362/112349 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2078-2489 PURE: 28265368 https://doi.org/10.3390/info12020050 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596642783133696 |