Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic

Detalhes bibliográficos
Autor(a) principal: Saramago, Gabriel
Data de Publicação: 2022
Outros Autores: Montenegro, Pedro Aires, Ribeiro, Diogo, Silva, Artur, Santos, Sergio, Calçada, Rui
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.22/21735
Resumo: This article describes the experimental and numerical evaluation of the dynamic behaviour of the Cascalheira bridge, located on the Northern Line of the Portuguese railway network. The bridge has a short span formed by two filler-beam half-decks, each one accommodating a railway track. The study includes the development of a finite element numerical model in ANSYS® software, as well as in situ dynamic characterization tests of the structure, namely ambient vibration tests, for the estimation of natural frequencies, modes shapes and damping coefficients, and a dynamic test under railway traffic, particularly for the passage of the Alfa Pendular train. The damping coefficients’ estimation was performed based on the Prony method, which proved effective in situations where the classical methods (e.g., decrement logarithm) tend to fail, particularly in the case of mode shapes with closed natural frequencies, as typically happens with the first vertical bending and torsion modes. The updating of the numerical model of the bridge was carried out using an iterative methodology based on a genetic algorithm, allowing an upgrade of the agreement between the numerical and experimental modal parameters. Particular attention was given to the characterization of the ballast degradation over the longitudinal joint between the two half-decks, given its influence in the global dynamic behavior of this type of double-deck bridges. Finally, the validation of the numerical model was performed by comparing the acceleration response of the structure under traffic actions, by means of numerical dynamic analyses considering vehicle-bridge interaction and including track irregularities, with the ones obtained by the dynamic test under traffic actions. The results of the calibrated numerical model showed a better agreement with the experimental results based on the accelerations evaluated in several measurement points located in both half-decks. In the validation process the vertical stiffness of the supports, as well as the degradation of the ballast located over the longitudinal joint between half-decks, was demonstrated to be relevant for the accuracy and effectiveness of the numerical models.
id RCAP_ad6bfedbb4716e1580c4b080e8dd9f31
oai_identifier_str oai:recipp.ipp.pt:10400.22/21735
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Experimental Validation of a Double-Deck Track-Bridge System under Railway TrafficRailway bridgeNumerical modellingDynamic testingModel updatingExperimental validationTrain-bridge interactionThis article describes the experimental and numerical evaluation of the dynamic behaviour of the Cascalheira bridge, located on the Northern Line of the Portuguese railway network. The bridge has a short span formed by two filler-beam half-decks, each one accommodating a railway track. The study includes the development of a finite element numerical model in ANSYS® software, as well as in situ dynamic characterization tests of the structure, namely ambient vibration tests, for the estimation of natural frequencies, modes shapes and damping coefficients, and a dynamic test under railway traffic, particularly for the passage of the Alfa Pendular train. The damping coefficients’ estimation was performed based on the Prony method, which proved effective in situations where the classical methods (e.g., decrement logarithm) tend to fail, particularly in the case of mode shapes with closed natural frequencies, as typically happens with the first vertical bending and torsion modes. The updating of the numerical model of the bridge was carried out using an iterative methodology based on a genetic algorithm, allowing an upgrade of the agreement between the numerical and experimental modal parameters. Particular attention was given to the characterization of the ballast degradation over the longitudinal joint between the two half-decks, given its influence in the global dynamic behavior of this type of double-deck bridges. Finally, the validation of the numerical model was performed by comparing the acceleration response of the structure under traffic actions, by means of numerical dynamic analyses considering vehicle-bridge interaction and including track irregularities, with the ones obtained by the dynamic test under traffic actions. The results of the calibrated numerical model showed a better agreement with the experimental results based on the accelerations evaluated in several measurement points located in both half-decks. In the validation process the vertical stiffness of the supports, as well as the degradation of the ballast located over the longitudinal joint between half-decks, was demonstrated to be relevant for the accuracy and effectiveness of the numerical models.MDPIREPOSITÓRIO P.PORTOSaramago, GabrielMontenegro, Pedro AiresRibeiro, DiogoSilva, ArturSantos, SergioCalçada, Rui2023-01-20T14:39:28Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21735eng10.3390/su14105794info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:29:55Zoai:recipp.ipp.pt:10400.22/21735Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:58:31.746387Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
title Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
spellingShingle Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
Saramago, Gabriel
Railway bridge
Numerical modelling
Dynamic testing
Model updating
Experimental validation
Train-bridge interaction
title_short Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
title_full Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
title_fullStr Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
title_full_unstemmed Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
title_sort Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic
author Saramago, Gabriel
author_facet Saramago, Gabriel
Montenegro, Pedro Aires
Ribeiro, Diogo
Silva, Artur
Santos, Sergio
Calçada, Rui
author_role author
author2 Montenegro, Pedro Aires
Ribeiro, Diogo
Silva, Artur
Santos, Sergio
Calçada, Rui
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Saramago, Gabriel
Montenegro, Pedro Aires
Ribeiro, Diogo
Silva, Artur
Santos, Sergio
Calçada, Rui
dc.subject.por.fl_str_mv Railway bridge
Numerical modelling
Dynamic testing
Model updating
Experimental validation
Train-bridge interaction
topic Railway bridge
Numerical modelling
Dynamic testing
Model updating
Experimental validation
Train-bridge interaction
description This article describes the experimental and numerical evaluation of the dynamic behaviour of the Cascalheira bridge, located on the Northern Line of the Portuguese railway network. The bridge has a short span formed by two filler-beam half-decks, each one accommodating a railway track. The study includes the development of a finite element numerical model in ANSYS® software, as well as in situ dynamic characterization tests of the structure, namely ambient vibration tests, for the estimation of natural frequencies, modes shapes and damping coefficients, and a dynamic test under railway traffic, particularly for the passage of the Alfa Pendular train. The damping coefficients’ estimation was performed based on the Prony method, which proved effective in situations where the classical methods (e.g., decrement logarithm) tend to fail, particularly in the case of mode shapes with closed natural frequencies, as typically happens with the first vertical bending and torsion modes. The updating of the numerical model of the bridge was carried out using an iterative methodology based on a genetic algorithm, allowing an upgrade of the agreement between the numerical and experimental modal parameters. Particular attention was given to the characterization of the ballast degradation over the longitudinal joint between the two half-decks, given its influence in the global dynamic behavior of this type of double-deck bridges. Finally, the validation of the numerical model was performed by comparing the acceleration response of the structure under traffic actions, by means of numerical dynamic analyses considering vehicle-bridge interaction and including track irregularities, with the ones obtained by the dynamic test under traffic actions. The results of the calibrated numerical model showed a better agreement with the experimental results based on the accelerations evaluated in several measurement points located in both half-decks. In the validation process the vertical stiffness of the supports, as well as the degradation of the ballast located over the longitudinal joint between half-decks, was demonstrated to be relevant for the accuracy and effectiveness of the numerical models.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-20T14:39:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21735
url http://hdl.handle.net/10400.22/21735
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/su14105794
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600782169014272