Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/57913 |
Summary: | This paper aims to illustrate the application of a derivative-free multistart algorithm with coordinate search filter, designated as the MCSFilter algorithm. The problem used in this study is the parameter estimation problem of the kinetic α -pinene isomerization model. This is a well known nonlinear optimization problem (NLP) that has been investigated as a case study for performance testing of most derivative based methods proposed in the literature. Since the MCSFilter algorithm features a stochastic component, it was run ten times to solve the NLP problem. The optimization problem was successfully solved in all the runs and the optimal solution demonstrates that the MCSFilter provides a good quality solution. |
| id |
RCAP_ad3836b88fd8b04a2079902bd5cbe529 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/57913 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithmDerivative-free optimizationMCSFilterMultistartα-Pinene isomerization modelScience & TechnologyThis paper aims to illustrate the application of a derivative-free multistart algorithm with coordinate search filter, designated as the MCSFilter algorithm. The problem used in this study is the parameter estimation problem of the kinetic α -pinene isomerization model. This is a well known nonlinear optimization problem (NLP) that has been investigated as a case study for performance testing of most derivative based methods proposed in the literature. Since the MCSFilter algorithm features a stochastic component, it was run ten times to solve the NLP problem. The optimization problem was successfully solved in all the runs and the optimal solution demonstrates that the MCSFilter provides a good quality solution.(undefined)info:eu-repo/semantics/publishedVersionSpringerUniversidade do MinhoAmador, AndreiaFernandes, Florbela P.Santos, Lino O.Romanenko, AndreyRocha, Ana Maria A. C.20182018-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/57913eng97833199516450302-974310.1007/978-3-319-95165-2_44info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:22:26Zoai:repositorium.sdum.uminho.pt:1822/57913Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:24:54.216457Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| title |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| spellingShingle |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm Amador, Andreia Derivative-free optimization MCSFilter Multistart α-Pinene isomerization model Science & Technology |
| title_short |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| title_full |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| title_fullStr |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| title_full_unstemmed |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| title_sort |
Parameter estimation of the kinetic α-Pinene isomerization model using the MCSfilter algorithm |
| author |
Amador, Andreia |
| author_facet |
Amador, Andreia Fernandes, Florbela P. Santos, Lino O. Romanenko, Andrey Rocha, Ana Maria A. C. |
| author_role |
author |
| author2 |
Fernandes, Florbela P. Santos, Lino O. Romanenko, Andrey Rocha, Ana Maria A. C. |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Amador, Andreia Fernandes, Florbela P. Santos, Lino O. Romanenko, Andrey Rocha, Ana Maria A. C. |
| dc.subject.por.fl_str_mv |
Derivative-free optimization MCSFilter Multistart α-Pinene isomerization model Science & Technology |
| topic |
Derivative-free optimization MCSFilter Multistart α-Pinene isomerization model Science & Technology |
| description |
This paper aims to illustrate the application of a derivative-free multistart algorithm with coordinate search filter, designated as the MCSFilter algorithm. The problem used in this study is the parameter estimation problem of the kinetic α -pinene isomerization model. This is a well known nonlinear optimization problem (NLP) that has been investigated as a case study for performance testing of most derivative based methods proposed in the literature. Since the MCSFilter algorithm features a stochastic component, it was run ten times to solve the NLP problem. The optimization problem was successfully solved in all the runs and the optimal solution demonstrates that the MCSFilter provides a good quality solution. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/57913 |
| url |
http://hdl.handle.net/1822/57913 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9783319951645 0302-9743 10.1007/978-3-319-95165-2_44 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595928867504128 |