Export Ready — 

Semigroup Actions of Expanding Maps

Bibliographic Details
Main Author: Maria Pires de Carvalho
Publication Date: 2017
Other Authors: Fagner B. Rodrigues, Paulo Varandas
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/90515
Summary: We consider semigroups of Ruelle-expanding maps, parameterized by random walks on the free semigroup, with the aim of examining their complexity and exploring the relation between intrinsic properties of the semigroup action and the thermodynamic formalism of the associated skew-product. In particular, we clarify the connection between the topological entropy of the semigroup action and the growth rate of the periodic points, establish the main properties of the dynamical zeta function of the semigroup action and relate these notions to recent research on annealed and quenched thermodynamic formalism. Meanwhile, we examine how the choice of the random walk in the semigroup unsettles the ergodic properties of the action.
id RCAP_acaa97088d1c045c7918a85c3b3dc1c4
oai_identifier_str oai:repositorio-aberto.up.pt:10216/90515
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Semigroup Actions of Expanding MapsMatemáticaMathematicsWe consider semigroups of Ruelle-expanding maps, parameterized by random walks on the free semigroup, with the aim of examining their complexity and exploring the relation between intrinsic properties of the semigroup action and the thermodynamic formalism of the associated skew-product. In particular, we clarify the connection between the topological entropy of the semigroup action and the growth rate of the periodic points, establish the main properties of the dynamical zeta function of the semigroup action and relate these notions to recent research on annealed and quenched thermodynamic formalism. Meanwhile, we examine how the choice of the random walk in the semigroup unsettles the ergodic properties of the action.2017-01-092017-01-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90515eng0022-471510.1007/s10955-016-1697-3Maria Pires de CarvalhoFagner B. RodriguesPaulo Varandasinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T17:25:00Zoai:repositorio-aberto.up.pt:10216/90515Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:13:38.648350Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Semigroup Actions of Expanding Maps
title Semigroup Actions of Expanding Maps
spellingShingle Semigroup Actions of Expanding Maps
Maria Pires de Carvalho
Matemática
Mathematics
title_short Semigroup Actions of Expanding Maps
title_full Semigroup Actions of Expanding Maps
title_fullStr Semigroup Actions of Expanding Maps
title_full_unstemmed Semigroup Actions of Expanding Maps
title_sort Semigroup Actions of Expanding Maps
author Maria Pires de Carvalho
author_facet Maria Pires de Carvalho
Fagner B. Rodrigues
Paulo Varandas
author_role author
author2 Fagner B. Rodrigues
Paulo Varandas
author2_role author
author
dc.contributor.author.fl_str_mv Maria Pires de Carvalho
Fagner B. Rodrigues
Paulo Varandas
dc.subject.por.fl_str_mv Matemática
Mathematics
topic Matemática
Mathematics
description We consider semigroups of Ruelle-expanding maps, parameterized by random walks on the free semigroup, with the aim of examining their complexity and exploring the relation between intrinsic properties of the semigroup action and the thermodynamic formalism of the associated skew-product. In particular, we clarify the connection between the topological entropy of the semigroup action and the growth rate of the periodic points, establish the main properties of the dynamical zeta function of the semigroup action and relate these notions to recent research on annealed and quenched thermodynamic formalism. Meanwhile, we examine how the choice of the random walk in the semigroup unsettles the ergodic properties of the action.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-09
2017-01-09T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/90515
url https://hdl.handle.net/10216/90515
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-4715
10.1007/s10955-016-1697-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599604376993792