Export Ready — 

Adsorption of hexoses on the Ti2CO2 MXene

Bibliographic Details
Main Author: Gouveia, J. D.
Publication Date: 2024
Other Authors: Gomes, J. R. B.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/43647
Summary: In this study, we employed density functional theory calculations to investigate the adsorption behavior of α and β isomers of d-glucopyranose, d-galactopyranose, d-fructopyranose, and d-mannopyranose on the Ti2CO2 MXene surface, in order to understand the potential of this material for sensing sugars. The adsorption process was found to occur via strong noncovalent interactions, primarily through hydrogen bonding and with the hexoses oriented parallel to the surface. The calculated adsorption energies vary between −0.78 (α-d-fructopyranose) and −1.00 eV (β-d-glucopyranose). Importantly, while the charge transfer was found to be negligible, the work function of the material was found to change by up to 0.3 eV in the case of the compound that adsorbs most strongly, β-d-glucopyranose, while less important changes were found for the other studied hexoses. We also explored the influence of defects in the MXene structure on the adsorption of β-d-glucopyranose and observed that oxygen or titanium vacancies enhance the adsorption strength. These findings indicate that the Ti2CO2 MXene is a promising candidate for selective glucopyranose sensing, which can be interesting for glucose detection applications.
id RCAP_ac6e0378e297ee7fca01e1b7ec16d9c2
oai_identifier_str oai:ria.ua.pt:10773/43647
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Adsorption of hexoses on the Ti2CO2 MXene2D materialsAdsorptionDensity functional theoryHexoseMXenesSensingIn this study, we employed density functional theory calculations to investigate the adsorption behavior of α and β isomers of d-glucopyranose, d-galactopyranose, d-fructopyranose, and d-mannopyranose on the Ti2CO2 MXene surface, in order to understand the potential of this material for sensing sugars. The adsorption process was found to occur via strong noncovalent interactions, primarily through hydrogen bonding and with the hexoses oriented parallel to the surface. The calculated adsorption energies vary between −0.78 (α-d-fructopyranose) and −1.00 eV (β-d-glucopyranose). Importantly, while the charge transfer was found to be negligible, the work function of the material was found to change by up to 0.3 eV in the case of the compound that adsorbs most strongly, β-d-glucopyranose, while less important changes were found for the other studied hexoses. We also explored the influence of defects in the MXene structure on the adsorption of β-d-glucopyranose and observed that oxygen or titanium vacancies enhance the adsorption strength. These findings indicate that the Ti2CO2 MXene is a promising candidate for selective glucopyranose sensing, which can be interesting for glucose detection applications.ACS2025-01-22T16:34:47Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/43647eng1932-744710.1021/acs.jpcc.4c04821Gouveia, J. D.Gomes, J. R. B.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-27T01:49:56Zoai:ria.ua.pt:10773/43647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:41:45.866268Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Adsorption of hexoses on the Ti2CO2 MXene
title Adsorption of hexoses on the Ti2CO2 MXene
spellingShingle Adsorption of hexoses on the Ti2CO2 MXene
Gouveia, J. D.
2D materials
Adsorption
Density functional theory
Hexose
MXenes
Sensing
title_short Adsorption of hexoses on the Ti2CO2 MXene
title_full Adsorption of hexoses on the Ti2CO2 MXene
title_fullStr Adsorption of hexoses on the Ti2CO2 MXene
title_full_unstemmed Adsorption of hexoses on the Ti2CO2 MXene
title_sort Adsorption of hexoses on the Ti2CO2 MXene
author Gouveia, J. D.
author_facet Gouveia, J. D.
Gomes, J. R. B.
author_role author
author2 Gomes, J. R. B.
author2_role author
dc.contributor.author.fl_str_mv Gouveia, J. D.
Gomes, J. R. B.
dc.subject.por.fl_str_mv 2D materials
Adsorption
Density functional theory
Hexose
MXenes
Sensing
topic 2D materials
Adsorption
Density functional theory
Hexose
MXenes
Sensing
description In this study, we employed density functional theory calculations to investigate the adsorption behavior of α and β isomers of d-glucopyranose, d-galactopyranose, d-fructopyranose, and d-mannopyranose on the Ti2CO2 MXene surface, in order to understand the potential of this material for sensing sugars. The adsorption process was found to occur via strong noncovalent interactions, primarily through hydrogen bonding and with the hexoses oriented parallel to the surface. The calculated adsorption energies vary between −0.78 (α-d-fructopyranose) and −1.00 eV (β-d-glucopyranose). Importantly, while the charge transfer was found to be negligible, the work function of the material was found to change by up to 0.3 eV in the case of the compound that adsorbs most strongly, β-d-glucopyranose, while less important changes were found for the other studied hexoses. We also explored the influence of defects in the MXene structure on the adsorption of β-d-glucopyranose and observed that oxygen or titanium vacancies enhance the adsorption strength. These findings indicate that the Ti2CO2 MXene is a promising candidate for selective glucopyranose sensing, which can be interesting for glucose detection applications.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-01T00:00:00Z
2024
2025-01-22T16:34:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/43647
url http://hdl.handle.net/10773/43647
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1932-7447
10.1021/acs.jpcc.4c04821
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ACS
publisher.none.fl_str_mv ACS
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598263319592960