Experimental evaluation of big data querying tools
| Main Author: | |
|---|---|
| Publication Date: | 2017 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.26/25338 |
Summary: | Nos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência. |
| id |
RCAP_ab45fd79c438182b6bdcd7bd08b8f7a0 |
|---|---|
| oai_identifier_str |
oai:comum.rcaap.pt:10400.26/25338 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Experimental evaluation of big data querying toolsBig DataHadoopSQL-on-HadoopQuery processingBig data analyticsNos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência.Bernardino, Jorge Fernandes RodriguesRepositório ComumRodrigues, Mário Miguel Lucas2018-12-13T16:28:27Z2018-07-1620172018-07-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/25338urn:tid:202242943enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:29:19Zoai:comum.rcaap.pt:10400.26/25338Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:49:27.287909Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Experimental evaluation of big data querying tools |
| title |
Experimental evaluation of big data querying tools |
| spellingShingle |
Experimental evaluation of big data querying tools Rodrigues, Mário Miguel Lucas Big Data Hadoop SQL-on-Hadoop Query processing Big data analytics |
| title_short |
Experimental evaluation of big data querying tools |
| title_full |
Experimental evaluation of big data querying tools |
| title_fullStr |
Experimental evaluation of big data querying tools |
| title_full_unstemmed |
Experimental evaluation of big data querying tools |
| title_sort |
Experimental evaluation of big data querying tools |
| author |
Rodrigues, Mário Miguel Lucas |
| author_facet |
Rodrigues, Mário Miguel Lucas |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bernardino, Jorge Fernandes Rodrigues Repositório Comum |
| dc.contributor.author.fl_str_mv |
Rodrigues, Mário Miguel Lucas |
| dc.subject.por.fl_str_mv |
Big Data Hadoop SQL-on-Hadoop Query processing Big data analytics |
| topic |
Big Data Hadoop SQL-on-Hadoop Query processing Big data analytics |
| description |
Nos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017 2018-12-13T16:28:27Z 2018-07-16 2018-07-16T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/25338 urn:tid:202242943 |
| url |
http://hdl.handle.net/10400.26/25338 |
| identifier_str_mv |
urn:tid:202242943 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602798053228544 |